语言:
- 埃尔齐亚语
- 俄语
- 芬兰语
- 德语
- 西班牙语
- 英语
- 印地语
- 中文
- 土耳其语
- 乌克兰语
- 法语
- 阿拉伯语
标签:
- 埃尔齐亚语
- 莫尔多维亚语
- 翻译
许可证: cc-by-sa-4.0
数据集:
- slone/myv_ru_2022
- yhavinga/ccmatrix
这是一个将文本从其他11种语言(ru,fi,de,es,en,hi,zh,tr,uk,fr,ar
)翻译成埃尔齐亚语(myv
,西里尔字母)的模型。查看其演示!
该模型在论文《埃尔齐亚语的第一个神经机器翻译系统》中有详细描述。
此模型基于facebook/mbart-large-50,但更新了词汇表和检查点:
- 添加了一个额外的语言标记
myv_XX
和19K个新的BPE标记用于埃尔齐亚语;
- 微调以从埃尔齐亚语翻译:首先翻译成俄语,然后翻译成所有11种语言。
以下代码可用于运行模型的翻译功能:
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
def fix_tokenizer(tokenizer):
""" 向分词器词汇表中添加一个新的语言标记(每次初始化后都应执行此操作) """
old_len = len(tokenizer) - int('myv_XX' in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id['myv_XX'] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = 'myv_XX'
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if 'myv_XX' not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append('myv_XX')
tokenizer.added_tokens_encoder = {}
def translate(text, model, tokenizer, src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False, n_out=None, **kwargs):
tokenizer.src_lang = src
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
if max_length == 'auto':
max_length = int(32 + 1.5 * encoded.input_ids.shape[1])
if train_mode:
model.train()
else:
model.eval()
generated_tokens = model.generate(
**encoded.to(model.device),
forced_bos_token_id=tokenizer.lang_code_to_id[trg],
max_length=max_length,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
num_return_sequences=n_out or 1,
**kwargs
)
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
if isinstance(text, str) and n_out is None:
return out[0]
return out
mname = 'slone/mbart-large-51-myv-mul-v1'
model = MBartForConditionalGeneration.from_pretrained(mname)
tokenizer = MBart50Tokenizer.from_pretrained(mname)
fix_tokenizer(tokenizer)
print(translate('Шумбрат, киска!', model, tokenizer, src='myv_XX', trg='ru_RU'))
print(translate('Шумбрат, киска!', model, tokenizer, src='myv_XX', trg='en_XX'))