language: tn
茨瓦纳语BERT
基于掩码语言建模(MLM)目标预训练的茨瓦纳语模型。
模型描述
茨瓦纳语BERT是一种通过自监督方式在茨瓦纳语语料库上预训练的Transformer模型,通过掩码部分输入词汇并利用字节级标记来预测被掩码内容。
使用场景与限制
该模型可用于掩码语言建模或下一词预测任务,也可针对特定下游自然语言处理应用进行微调。
使用方法
>>> from transformers import pipeline
>>> from transformers import AutoTokenizer, AutoModelWithLMHead
>>> tokenizer = AutoTokenizer.from_pretrained("MoseliMotsoehli/TswanaBert")
>>> model = AutoModelWithLMHead.from_pretrained("MoseliMotsoehli/TswanaBert")
>>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer)
>>> unmasker("Ntshopotse <mask> e godile.")
[{'score': 0.32749542593955994,
'sequence': '<s>Ntshopotse setse e godile.</s>',
'token': 538,
'token_str': 'Ġsetse'},
{'score': 0.060260992497205734,
'sequence': '<s>Ntshopotse le e godile.</s>',
'token': 270,
'token_str': 'Ġle'},
{'score': 0.058460816740989685,
'sequence': '<s>Ntshopotse bone e godile.</s>',
'token': 364,
'token_str': 'Ġbone'},
{'score': 0.05694682151079178,
'sequence': '<s>Ntshopotse ga e godile.</s>',
'token': 298,
'token_str': 'Ġga'},
{'score': 0.0565204992890358,
'sequence': '<s>Ntshopotse, e godile.</s>',
'token': 16,
'token_str': ','}]
局限性及偏差
当前模型训练数据主要来自新闻文章和文学作品,茨瓦纳语语料规模相对有限,尚不足以全面反映该语言特征。
训练数据
-
主要语料(10,000句)来自莱比锡语料库集
-
补充185句茨瓦纳语新闻标题,数据由Marivate Vukosi与Sefara Tshephisho (2020) 通过zenoodo公开提供
-
通过爬取博茨瓦纳本土新闻站点及博客新增300句语料,数据持续扩充中:
- http://setswana.blogspot.com/
- https://omniglot.com/writing/tswana.php
- http://www.dailynews.gov.bw/
- http://www.mmegi.bw/index.php
- https://tsena.co.bw
- http://www.botswana.co.za/Cultural_Issues-travel/botswana-country-guide-en-route.html
- https://www.poemhunter.com/poem/2013-setswana/
https://www.poemhunter.com/poem/ngwana-wa-mosetsana/
引用信息
@inproceedings{author = {Moseli Motsoehli},
year={2020}
}