license: apache-2.0
tags:
- 图像分类
- 训练生成
metrics:
- 准确率
model-index:
- name: exper_batch_16_e8
results: []
exper_batch_16_e8
本模型是基于google/vit-base-patch16-224-in21k在sudo-s/herbier_mesuem1数据集上微调的版本。在评估集上取得了以下结果:
模型描述
(需补充详细信息)
适用范围与限制
(需补充详细信息)
训练与评估数据
(需补充详细信息)
训练流程
训练超参数
训练过程中使用了以下超参数:
- 学习率:0.0002
- 训练批次大小:16
- 评估批次大小:8
- 随机种子:42
- 优化器:Adam(beta系数0.9/0.999,epsilon=1e-08)
- 学习率调度器类型:线性
- 训练轮次:8
- 混合精度训练:Apex(优化级别O1)
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
准确率 |
3.8115 |
0.16 |
100 |
3.7948 |
18.62% |
3.1194 |
0.31 |
200 |
3.0120 |
32.81% |
2.3703 |
0.47 |
300 |
2.4791 |
44.26% |
2.07 |
0.63 |
400 |
2.1720 |
50.00% |
1.6847 |
0.78 |
500 |
1.7291 |
59.56% |
1.3821 |
0.94 |
600 |
1.4777 |
62.99% |
0.9498 |
1.1 |
700 |
1.2935 |
66.81% |
0.8741 |
1.25 |
800 |
1.1353 |
70.51% |
0.8875 |
1.41 |
900 |
0.9951 |
74.48% |
0.7233 |
1.56 |
1000 |
0.9265 |
74.87% |
0.6696 |
1.72 |
1100 |
0.8660 |
76.25% |
0.7364 |
1.88 |
1200 |
0.8710 |
75.79% |
0.3933 |
2.03 |
1300 |
0.7162 |
80.38% |
0.3443 |
2.19 |
1400 |
0.6305 |
83.00% |
0.3376 |
2.35 |
1500 |
0.6273 |
83.15% |
0.3071 |
2.5 |
1600 |
0.5988 |
83.19% |
0.2863 |
2.66 |
1700 |
0.6731 |
81.53% |
0.3017 |
2.82 |
1800 |
0.6042 |
83.15% |
0.2382 |
2.97 |
1900 |
0.5118 |
87.12% |
0.1578 |
3.13 |
2000 |
0.4917 |
87.36% |
0.1794 |
3.29 |
2100 |
0.5302 |
86.31% |
0.1093 |
3.44 |
2200 |
0.5035 |
86.35% |
0.1076 |
3.6 |
2300 |
0.5186 |
86.74% |
0.1219 |
3.76 |
2400 |
0.4723 |
88.01% |
0.1017 |
3.91 |
2500 |
0.5132 |
87.12% |
0.0351 |
4.07 |
2600 |
0.4709 |
87.28% |
0.0295 |
4.23 |
2700 |
0.4674 |
88.24% |
0.0416 |
4.38 |
2800 |
0.4836 |
88.05% |
0.0386 |
4.54 |
2900 |
0.4663 |
88.28% |
0.0392 |
4.69 |
3000 |
0.4003 |
89.90% |
0.0383 |
4.85 |
3100 |
0.4187 |
89.48% |
0.0624 |
5.01 |
3200 |
0.4460 |
88.74% |
0.0188 |
5.16 |
3300 |
0.4169 |
90.29% |
0.0174 |
5.32 |
3400 |
0.4098 |
89.51% |
0.0257 |
5.48 |
3500 |
0.4289 |
89.51% |
0.0123 |
5.63 |
3600 |
0.4295 |
90.29% |
0.0052 |
5.79 |
3700 |
0.4395 |
89.94% |
0.0081 |
5.95 |
3800 |
0.4217 |
90.82% |
0.0032 |
6.1 |
3900 |
0.4216 |
90.56% |
0.0033 |
6.26 |
4000 |
0.4113 |
90.82% |
0.0024 |
6.42 |
4100 |
0.4060 |
91.02% |
0.0022 |
6.57 |
4200 |
0.4067 |
90.90% |
0.0031 |
6.73 |
4300 |
0.4005 |
91.13% |
0.0021 |
6.89 |
4400 |
0.4008 |
91.29% |
0.0021 |
7.04 |
4500 |
0.3967 |
91.13% |
0.0043 |
7.2 |
4600 |
0.3960 |
91.21% |
0.0022 |
7.36 |
4700 |
0.3962 |
91.25% |
0.0021 |
7.51 |
4800 |
0.3992 |
91.21% |
0.002 |
7.67 |
4900 |
0.3951 |
91.29% |
0.0023 |
7.82 |
5000 |
0.3952 |
91.25% |
0.0021 |
7.98 |
5100 |
0.3952 |
91.29% |
框架版本
- Transformers 4.19.4
- Pytorch 1.5.1
- Datasets 2.3.2
- Tokenizers 0.12.1