license: apache-2.0
tags:
- 由训练器生成
datasets:
- 图像文件夹
metrics:
- 准确率
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: 图像分类
type: image-classification
dataset:
name: 图像文件夹
type: imagefolder
args: 默认
metrics:
- name: 准确率
type: accuracy
value: 0.8464730290456431
swin-tiny-patch4-window7-224-finetuned-eurosat
该模型是基于microsoft/swin-tiny-patch4-window7-224在图像文件夹数据集上微调的版本。
在评估集上取得了如下结果:
模型描述
需要更多信息
预期用途与限制
需要更多信息
训练与评估数据
需要更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率:5e-05
- 训练批次大小:32
- 评估批次大小:32
- 随机种子:42
- 梯度累积步数:4
- 总训练批次大小:128
- 优化器:Adam,参数beta=(0.9,0.999),epsilon=1e-08
- 学习率调度器类型:线性
- 学习率预热比例:0.1
- 训练轮数:50
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
准确率 |
1.2941 |
1.0 |
17 |
1.1717 |
0.4689 |
1.0655 |
2.0 |
34 |
0.9397 |
0.5560 |
0.8008 |
3.0 |
51 |
0.6153 |
0.7303 |
0.7204 |
4.0 |
68 |
0.5665 |
0.7427 |
0.6931 |
5.0 |
85 |
0.4670 |
0.7801 |
0.6277 |
6.0 |
102 |
0.4328 |
0.8465 |
0.5689 |
7.0 |
119 |
0.4078 |
0.8174 |
0.6103 |
8.0 |
136 |
0.4060 |
0.8091 |
0.5501 |
9.0 |
153 |
0.4842 |
0.7884 |
0.6018 |
10.0 |
170 |
0.3780 |
0.8423 |
0.5668 |
11.0 |
187 |
0.3551 |
0.8631 |
0.5192 |
12.0 |
204 |
0.4514 |
0.8216 |
0.5133 |
13.0 |
221 |
0.3598 |
0.8174 |
0.5753 |
14.0 |
238 |
0.4172 |
0.8091 |
0.4833 |
15.0 |
255 |
0.4685 |
0.8050 |
0.5546 |
16.0 |
272 |
0.4474 |
0.7842 |
0.5179 |
17.0 |
289 |
0.4570 |
0.7884 |
0.5017 |
18.0 |
306 |
0.4218 |
0.8050 |
0.4808 |
19.0 |
323 |
0.4094 |
0.8050 |
0.4708 |
20.0 |
340 |
0.4693 |
0.7759 |
0.5033 |
21.0 |
357 |
0.3141 |
0.8672 |
0.4859 |
22.0 |
374 |
0.3687 |
0.8257 |
0.516 |
23.0 |
391 |
0.3819 |
0.8216 |
0.4822 |
24.0 |
408 |
0.3391 |
0.8506 |
0.4748 |
25.0 |
425 |
0.3281 |
0.8506 |
0.4914 |
26.0 |
442 |
0.3308 |
0.8631 |
0.4354 |
27.0 |
459 |
0.3859 |
0.8133 |
0.4297 |
28.0 |
476 |
0.3761 |
0.8133 |
0.4747 |
29.0 |
493 |
0.2914 |
0.8672 |
0.4395 |
30.0 |
510 |
0.3025 |
0.8548 |
0.4279 |
31.0 |
527 |
0.3314 |
0.8506 |
0.4327 |
32.0 |
544 |
0.4626 |
0.7842 |
0.446 |
33.0 |
561 |
0.3499 |
0.8382 |
0.4011 |
34.0 |
578 |
0.3408 |
0.8465 |
0.4418 |
35.0 |
595 |
0.3159 |
0.8589 |
0.484 |
36.0 |
612 |
0.3130 |
0.8548 |
0.4119 |
37.0 |
629 |
0.2899 |
0.8589 |
0.4453 |
38.0 |
646 |
0.3200 |
0.8465 |
0.4074 |
39.0 |
663 |
0.3493 |
0.8465 |
0.3937 |
40.0 |
680 |
0.3003 |
0.8672 |
0.4222 |
41.0 |
697 |
0.3547 |
0.8299 |
0.3922 |
42.0 |
714 |
0.3206 |
0.8589 |
0.3973 |
43.0 |
731 |
0.4074 |
0.8133 |
0.4118 |
44.0 |
748 |
0.3147 |
0.8589 |
0.4088 |
45.0 |
765 |
0.3393 |
0.8506 |
0.3635 |
46.0 |
782 |
0.3584 |
0.8257 |
0.403 |
47.0 |
799 |
0.3240 |
0.8506 |
0.3943 |
48.0 |
816 |
0.3536 |
0.8216 |
0.4085 |
49.0 |
833 |
0.3270 |
0.8465 |
0.3865 |
50.0 |
850 |
0.3266 |
0.8465 |
框架版本
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1