许可证:apache-2.0
标签:
- 视觉
- 图像分割
数据集:
- scene_parse_150
示例展示:
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
示例标题:老虎
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
示例标题:茶壶
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
示例标题:宫殿
基于ADE20k微调的DPT(大尺寸模型)
该模型用于输入图像的语义分割,如下表所示:
输入图像 |
输出分割图像 |
 |
 |
模型描述
基于Midas 3.0的密集预测变换器(DPT)模型在ADE20k数据集上进行了语义分割训练。该模型由Ranftl等人在论文《Vision Transformers for Dense Prediction》中提出,并首次发布于此代码库。
MiDaS v3.0 DPT使用视觉变换器(ViT)作为主干网络,并在其基础上添加了用于语义分割的颈部结构和头部结构。

免责声明:发布DPT的团队未为此模型编写模型卡,因此本模型卡由Hugging Face和英特尔AI社区团队编写。
结果:
根据作者的说法,在发布时,当应用于语义分割时,密集视觉变换器在ADE20K上以49.02%的mIoU创造了新的最先进水平。
我们进一步展示了该架构可以在较小的数据集(如NYUv2、KITTI和Pascal Context)上进行微调,并在这些数据集上也达到了新的最先进水平。我们的模型可在英特尔DPT GitHub仓库中找到。
预期用途与限制
您可以将原始模型用于语义分割。请参阅模型中心以查找您感兴趣任务的微调版本。
使用方法
以下是使用该模型的方法:
from transformers import DPTFeatureExtractor, DPTForSemanticSegmentation
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000026204.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade")
model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
print(logits.shape)
logits
prediction = torch.nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bicubic",
align_corners=False
)
prediction = torch.argmax(prediction, dim=1) + 1
prediction = prediction.squeeze()
prediction = prediction.cpu().numpy()
predicted_seg = Image.fromarray(prediction.squeeze().astype('uint8'))
adepallete = [0,0,0,120,120,120,180,120,120,6,230,230,80,50,50,4,200,3,120,120,80,140,140,140,204,5,255,230,230,230,4,250,7,224,5,255,235,255,7,150,5,61,120,120,70,8,255,51,255,6,82,143,255,140,204,255,4,255,51,7,204,70,3,0,102,200,61,230,250,255,6,51,11,102,255,255,7,71,255,9,224,9,7,230,220,220,220,255,9,92,112,9,255,8,255,214,7,255,224,255,184,6,10,255,71,255,41,10,7,255,255,224,255,8,102,8,255,255,61,6,255,194,7,255,122,8,0,255,20,255,8,41,255,5,153,6,51,255,235,12,255,160,150,20,0,163,255,140,140,140,250,10,15,20,255,0,31,255,0,255,31,0,255,224,0,153,255,0,0,0,255,255,71,0,0,235,255,0,173,255,31,0,255,11,200,200,255,82,0,0,255,245,0,61,255,0,255,112,0,255,133,255,0,0,255,163,0,255,102,0,194,255,0,0,143,255,51,255,0,0,82,255,0,255,41,0,255,173,10,0,255,173,255,0,0,255,153,255,92,0,255,0,255,255,0,245,255,0,102,255,173,0,255,0,20,255,184,184,0,31,255,0,255,61,0,71,255,255,0,204,0,255,194,0,255,82,0,10,255,0,112,255,51,0,255,0,194,255,0,122,255,0,255,163,255,153,0,0,255,10,255,112,0,143,255,0,82,0,255,163,255,0,255,235,0,8,184,170,133,0,255,0,255,92,184,0,255,255,0,31,0,184,255,0,214,255,255,0,112,92,255,0,0,224,255,112,224,255,70,184,160,163,0,255,153,0,255,71,255,0,255,0,163,255,204,0,255,0,143,0,255,235,133,255,0,255,0,235,245,0,255,255,0,122,255,245,0,10,190,212,214,255,0,0,204,255,20,0,255,255,255,0,0,153,255,0,41,255,0,255,204,41,0,255,41,255,0,173,0,255,0,245,255,71,0,255,122,0,255,0,255,184,0,92,255,184,255,0,0,133,255,255,214,0,25,194,194,102,255,0,92,0,255]
predicted_seg.putpalette(adepallete)
out = Image.blend(image, predicted_seg.convert("RGB"), alpha=0.5)
out
更多代码示例,请参阅文档。
BibTeX条目和引用信息
@article{DBLP:journals/corr/abs-2103-13413,
author = {Ren{\'{e}} Ranftl and
Alexey Bochkovskiy and
Vladlen Koltun},
title = {Vision Transformers for Dense Prediction},
journal = {CoRR},
volume = {abs/2103.13413},
year = {2021},
url = {https://arxiv.org/abs/2103.13413},
eprinttype = {arXiv},
eprint = {2103.13413},
timestamp = {Wed, 07 Apr 2021 15:31:46 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}