数据集:
- imagenet-1k
库名称: timm
标签:
- 图像分类
- timm
- rdnet
许可证: bsd-3-clause
rdnet_tiny.nv_in1k模型卡
一个RDNet图像分类模型。在ImageNet-1k上训练,原始torchvision权重。
模型详情
- 模型类型: 图像分类/特征骨干网络
- 模型统计:
- ImageNet-1k验证集top-1准确率: 82.8%
- 参数量(M): 24
- GMACs: 5.0
- 图像尺寸: 224 x 224
- 论文:
- DenseNets重装上阵:超越ResNets和ViTs的范式转变: https://arxiv.org/abs/2403.19588
- 数据集: ImageNet-1k
模型使用
图像分类
from urllib.request import urlopen
from PIL import Image
import timm
import torch
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('rdnet_tiny.nv_in1k', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
特征图提取
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'rdnet_tiny.nv_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
for o in output:
print(o.shape)
图像嵌入
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'rdnet_tiny.nv_in1k',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
引用
@misc{kim2024densenets,
title={DenseNets重装上阵:超越ResNets和ViTs的范式转变},
author={Donghyun Kim and Byeongho Heo and Dongyoon Han},
year={2024},
eprint={2403.19588},
archivePrefix={arXiv},
}