标签:
- 图像特征提取
- 鸟类识别
- pytorch
库名称: birder
许可证: apache-2.0
模型卡片:hiera_abswin_base_mim
采用绝对窗口位置嵌入策略的Hiera图像编码器,通过掩码图像建模(MIM)预训练。该模型未针对特定分类任务进行微调,旨在作为通用特征提取器或下游任务(如目标检测、分割或自定义分类)的骨干网络使用。
模型详情
模型使用
图像嵌入提取
import birder
from birder.inference.classification import infer_image
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
size = birder.get_size_from_signature(model_info.signature)
transform = birder.classification_transform(size, model_info.rgb_stats)
image = "图像路径.jpeg"
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
检测特征图提取
from PIL import Image
import birder
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True)
size = birder.get_size_from_signature(model_info.signature)
transform = birder.classification_transform(size, model_info.rgb_stats)
image = Image.open("图像路径.jpeg")
features = net.detection_features(transform(image).unsqueeze(0))
print([(k, v.size()) for k, v in features.items()])
引用文献
@misc{ryali2023hierahierarchicalvisiontransformer,
title={Hiera:一种去芜存菁的层次化视觉Transformer},
author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer},
year={2023},
eprint={2306.00989},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2306.00989},
}
@misc{bolya2023windowattentionbuggedinterpolate,
title={窗口注意力机制的缺陷:位置嵌入插值的错误方式},
author={Daniel Bolya and Chaitanya Ryali and Judy Hoffman and Christoph Feichtenhofer},
year={2023},
eprint={2311.05613},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2311.05613},
}