许可协议:apache-2.0
标签:
- 视觉
- 图像分类
数据集:
- imagenet-1k
示例展示:
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
示例标题:老虎
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
示例标题:茶壶
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
示例标题:宫殿
ConvNeXT(基础规模模型)
该ConvNeXT模型在224x224分辨率下基于ImageNet-1k数据集训练而成。它由Liu等人在论文《A ConvNet for the 2020s》(https://arxiv.org/abs/2201.03545)中提出,并首次发布于此代码库(https://github.com/facebookresearch/ConvNeXt)。
免责声明:发布ConvNeXT的团队未为此模型编写模型卡片,故本卡片由Hugging Face团队代笔。
模型描述
ConvNeXT是一个纯卷积模型(ConvNet),其设计灵感源自视觉Transformer,并宣称性能优于后者。作者以ResNet为起点,借鉴Swin Transformer的思想对其进行了"现代化"改造。

预期用途与限制
您可将该原始模型用于图像分类任务。访问模型中心可查找针对特定任务微调的版本。
使用方法
以下示例展示如何用该模型将COCO 2017数据集中的图像分类到ImageNet的1,000个类别中:
from transformers import ConvNextImageProcessor, ConvNextForImageClassification
import torch
from datasets import load_dataset
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
processor = ConvNextImageProcessor.from_pretrained("facebook/convnext-base-224")
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-224")
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label]),
更多代码示例请参阅文档。
BibTeX引用信息
@article{DBLP:journals/corr/abs-2201-03545,
author = {Zhuang Liu and
Hanzi Mao and
Chao{-}Yuan Wu and
Christoph Feichtenhofer and
Trevor Darrell and
Saining Xie},
title = {A ConvNet for the 2020s},
journal = {CoRR},
volume = {abs/2201.03545},
year = {2022},
url = {https://arxiv.org/abs/2201.03545},
eprinttype = {arXiv},
eprint = {2201.03545},
timestamp = {Thu, 20 Jan 2022 14:21:35 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}