许可证:apache-2.0
标签:
- 视觉
- 图像分类
数据集:
- imagenet-21k
- imagenet-1k
微件示例:
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
示例标题:老虎
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
示例标题:茶壶
- 图片链接:https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
示例标题:宫殿
ConvNeXT(大型模型)
ConvNeXT模型在ImageNet-22k上进行了预训练,并在384x384分辨率的ImageNet-1k上进行了微调。该模型由Liu等人在论文《A ConvNet for the 2020s》(https://arxiv.org/abs/2201.03545)中提出,并首次发布于此代码库(https://github.com/facebookresearch/ConvNeXt)。
免责声明:发布ConvNeXT的团队未为此模型编写模型卡,因此本模型卡由Hugging Face团队撰写。
模型描述
ConvNeXT是一个纯卷积模型(ConvNet),受视觉Transformer的设计启发,声称性能优于Transformer。作者从ResNet出发,以Swin Transformer为灵感,“现代化”了其设计。

预期用途与限制
您可以将该原始模型用于图像分类任务。请访问模型中心(https://huggingface.co/models?search=convnext)查找您感兴趣任务的微调版本。
使用方法
以下是如何使用该模型将COCO 2017数据集中的一张图片分类到1,000个ImageNet类别之一:
from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification
import torch
from datasets import load_dataset
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-large-384-22k-1k")
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-large-384-22k-1k")
inputs = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label]),
更多代码示例,请参阅文档(https://huggingface.co/docs/transformers/master/en/model_doc/convnext)。
BibTeX引用信息
@article{DBLP:journals/corr/abs-2201-03545,
author = {Zhuang Liu and
Hanzi Mao and
Chao{-}Yuan Wu and
Christoph Feichtenhofer and
Trevor Darrell and
Saining Xie},
title = {A ConvNet for the 2020s},
journal = {CoRR},
volume = {abs/2201.03545},
year = {2022},
url = {https://arxiv.org/abs/2201.03545},
eprinttype = {arXiv},
eprint = {2201.03545},
timestamp = {Thu, 20 Jan 2022 14:21:35 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}