license: apache-2.0
tags:
- 视觉
- 图像分类
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: 老虎
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: 茶壶
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: 宫殿
ConvNeXT (大型模型)
ConvNeXT模型在ImageNet-1k数据集上以224x224分辨率训练而成。该模型由Liu等人在论文《A ConvNet for the 2020s》中提出,并首次发布于此代码库。
免责声明:发布ConvNeXT的团队未为此模型编写模型卡,因此本模型卡由Hugging Face团队撰写。
模型描述
ConvNeXT是一个纯卷积模型(ConvNet),其设计灵感来自视觉变换器(Vision Transformers),并声称性能优于后者。作者从ResNet出发,以Swin Transformer为灵感,“现代化”了其设计。

预期用途与限制
您可以将原始模型用于图像分类任务。访问模型中心寻找针对您感兴趣任务的微调版本。
使用方法
以下示例展示如何使用该模型将COCO 2017数据集中的一张图像分类为ImageNet的1,000个类别之一:
from transformers import ConvNextImageProcessor, ConvNextForImageClassification
import torch
from datasets import load_dataset
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
processor = ConvNextImageProcessor.from_pretrained("facebook/convnext-small-224")
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-small-224")
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label]),
更多代码示例,请参阅文档。
BibTeX条目及引用信息
@article{DBLP:journals/corr/abs-2201-03545,
author = {Zhuang Liu and
Hanzi Mao and
Chao{-}Yuan Wu and
Christoph Feichtenhofer and
Trevor Darrell and
Saining Xie},
title = {A ConvNet for the 2020s},
journal = {CoRR},
volume = {abs/2201.03545},
year = {2022},
url = {https://arxiv.org/abs/2201.03545},
eprinttype = {arXiv},
eprint = {2201.03545},
timestamp = {Thu, 20 Jan 2022 14:21:35 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}