许可协议: apache-2.0
标签:
- 视觉
- 图像分类
数据集:
- imagenet-1k
微件示例:
- 图片链接: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
示例标题: 老虎
- 图片链接: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
示例标题: 茶壶
- 图片链接: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
示例标题: 宫殿
ConvNeXt V2 (atto尺寸模型)
该模型采用FCMAE框架预训练,并在ImageNet-1K数据集上以224x224分辨率微调完成。由Woo等人在论文《ConvNeXt V2: 协同设计与扩展掩码自编码器的卷积网络》中提出,并首发于此代码库。
免责声明:发布ConvNeXT V2的团队未提供模型卡片,本文档由Hugging Face团队撰写。
模型描述
ConvNeXt V2是一种纯卷积模型(ConvNet),创新性地引入了全卷积掩码自编码框架(FCMAE)和全新的全局响应归一化层(GRN)。该架构显著提升了纯卷积网络在多项识别基准测试中的性能表现。

使用场景与限制
您可将该原始模型用于图像分类任务。访问模型中心可查找针对特定任务微调的版本。
使用方法
以下示例展示如何将COCO 2017数据集的图像分类为1000个ImageNet类别之一:
from transformers import AutoImageProcessor, ConvNextV2ForImageClassification
import torch
from datasets import load_dataset
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-atto-1k-224")
model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-atto-1k-224")
inputs = preprocessor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
更多代码示例详见文档。
BibTeX引用信息
@article{DBLP:journals/corr/abs-2301-00808,
author = {Sanghyun Woo and
Shoubhik Debnath and
Ronghang Hu and
Xinlei Chen and
Zhuang Liu and
In So Kweon and
Saining Xie},
title = {ConvNeXt {V2:} Co-designing and Scaling ConvNets with Masked Autoencoders},
journal = {CoRR},
volume = {abs/2301.00808},
year = {2023},
url = {https://doi.org/10.48550/arXiv.2301.00808},
doi = {10.48550/arXiv.2301.00808},
eprinttype = {arXiv},
eprint = {2301.00808},
timestamp = {Tue, 10 Jan 2023 15:10:12 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2301-00808.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}