license: apache-2.0
tags:
- 视觉
- 图像分类
datasets:
- imagenet-22k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: 老虎
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: 茶壶
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: 宫殿
ConvNeXt V2(纳米级模型)
ConvNeXt V2模型采用FCMAE框架预训练,并在ImageNet-22K数据集上以384x384分辨率进行微调。该模型由Woo等人在论文ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders中提出,并首次发布于此代码库。
免责声明:发布ConvNeXT V2的团队未为此模型编写模型卡,因此本模型卡由Hugging Face团队撰写。
模型描述
ConvNeXt V2是一种纯卷积模型(ConvNet),引入了全卷积掩码自编码器框架(FCMAE)和新的全局响应归一化(GRN)层。ConvNeXt V2在各种识别基准测试中显著提升了纯卷积模型的性能。

预期用途与限制
您可以将原始模型用于图像分类任务。请访问模型中心查找针对您感兴趣任务的微调版本。
使用方法
以下示例展示如何使用该模型将COCO 2017数据集中的一张图像分类为ImageNet的1,000个类别之一:
from transformers import AutoImageProcessor, ConvNextV2ForImageClassification
import torch
from datasets import load_dataset
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-nano-22k-384")
model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-nano-22k-384")
inputs = preprocessor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label]),
更多代码示例,请参阅文档。
BibTeX条目及引用信息
@article{DBLP:journals/corr/abs-2301-00808,
author = {Sanghyun Woo and
Shoubhik Debnath and
Ronghang Hu and
Xinlei Chen and
Zhuang Liu and
In So Kweon and
Saining Xie},
title = {ConvNeXt {V2:} Co-designing and Scaling ConvNets with Masked Autoencoders},
journal = {CoRR},
volume = {abs/2301.00808},
year = {2023},
url = {https://doi.org/10.48550/arXiv.2301.00808},
doi = {10.48550/arXiv.2301.00808},
eprinttype = {arXiv},
eprint = {2301.00808},
timestamp = {Tue, 10 Jan 2023 15:10:12 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2301-00808.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}