许可证:其他
基础模型:nvidia/segformer-b3-finetuned-ade-512-512
标签:
模型索引:
- 名称:segformer-b3-ade-512-512-finetuned-coastTrain
结果:[]
segformer-b3-ade-512-512-finetuned-coastTrain
该模型是基于nvidia/segformer-b3-finetuned-ade-512-512在peldrak/coastTrain_512-512数据集上微调的版本。
在评估集上取得了以下结果:
- 损失:0.7613
- 平均交并比(Mean Iou):0.7092
- 平均准确率(Mean Accuracy):0.8104
- 总体准确率(Overall Accuracy):0.8790
- 水体准确率(Accuracy Water):0.9352
- 白水准确率(Accuracy Whitewater):0.8067
- 沉积物准确率(Accuracy Sediment):0.8732
- 其他自然地物准确率(Accuracy Other Natural Terrain):0.5054
- 植被准确率(Accuracy Vegetation):0.8997
- 开发区域准确率(Accuracy Development):0.8714
- 未知区域准确率(Accuracy Unknown):0.7814
- 水体交并比(Iou Water):0.8677
- 白水交并比(Iou Whitewater):0.6795
- 沉积物交并比(Iou Sediment):0.7649
- 其他自然地物交并比(Iou Other Natural Terrain):0.4259
- 植被交并比(Iou Vegetation):0.7883
- 开发区域交并比(Iou Development):0.7211
- 未知区域交并比(Iou Unknown):0.7170
模型描述
需补充更多信息
用途与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率:6e-05
- 训练批次大小:4
- 评估批次大小:4
- 随机种子:42
- 优化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 学习率调度器类型:线性
- 训练轮次:25
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
平均交并比 |
平均准确率 |
总体准确率 |
水体准确率 |
白水准确率 |
沉积物准确率 |
其他自然地物准确率 |
植被准确率 |
开发区域准确率 |
未知区域准确率 |
水体交并比 |
白水交并比 |
沉积物交并比 |
其他自然地物交并比 |
植被交并比 |
开发区域交并比 |
未知区域交并比 |
1.7642 |
0.05 |
20 |
1.6699 |
0.1741 |
0.2887 |
0.4511 |
0.3629 |
0.3020 |
0.0122 |
0.0013 |
0.8998 |
0.1317 |
0.3106 |
0.3310 |
0.0708 |
0.0112 |
0.0013 |
0.3953 |
0.1007 |
0.3084 |
1.6158 |
0.11 |
40 |
1.3903 |
0.1804 |
0.2783 |
0.5516 |
0.6957 |
0.0198 |
0.1032 |
0.0000 |
0.9605 |
0.1077 |
0.0616 |
0.5309 |
0.0184 |
0.0965 |
0.0000 |
0.4589 |
0.0973 |
0.0606 |
1.3168 |
0.16 |
60 |
1.1710 |
0.2583 |
0.3483 |
0.6425 |
0.8324 |
0.0359 |
0.0669 |
0.0 |
0.9578 |
0.1157 |
0.4296 |
0.6688 |
0.0344 |
0.0630 |
0.0 |
0.5089 |
0.1094 |
0.4233 |
1.1024 |
0.22 |
80 |
1.0398 |
0.3143 |
0.4032 |
0.6865 |
0.8815 |
0.1083 |
0.1413 |
0.0 |
0.9619 |
0.2673 |
0.4620 |
0.6970 |
0.1041 |
0.1261 |
0.0 |
0.5725 |
0.2452 |
0.4549 |
1.0384 |
0.27 |
100 |
0.9307 |
0.3388 |
0.4315 |
0.7113 |
0.8919 |
0.0379 |
0.3662 |
0.0 |
0.9582 |
0.2753 |
0.4913 |
0.7137 |
0.0374 |
0.2526 |
0.0 |
0.6316 |
0.2550 |
0.4813 |
0.9056 |
0.32 |
120 |
0.8649 |
0.3988 |
0.5060 |
0.7415 |
0.9191 |
0.1051 |
0.4270 |
0.0 |
0.8743 |
0.7201 |
0.4965 |
0.7159 |
0.1038 |
0.3178 |
0.0 |
0.6739 |
0.4951 |
0.4849 |
1.1867 |
0.38 |
140 |
0.8470 |
0.4027 |
0.5076 |
0.7418 |
0.8363 |
0.0329 |
0.6586 |
0.0 |
0.9529 |
0.5761 |
0.4960 |
0.7494 |
0.0326 |
0.4722 |
0.0 |
0.6188 |
0.4643 |
0.4815 |
1.2778 |
0.43 |
160 |
0.8108 |
0.4419 |
0.5491 |
0.7656 |
0.8973 |
0.1895 |
0.5864 |
0.0 |
0.9145 |
0.7679 |
0.4885 |
0.7758 |
0.1848 |
0.4732 |
0.0 |
0.6536 |
0.5269 |
0.4791 |
0.8217 |
0.49 |
180 |
0.7507 |
0.4544 |
0.5750 |
0.7728 |
0.8801 |
0.1928 |
0.7543 |
0.0 |
0.8893 |
0.7924 |
0.5161 |
0.7912 |
0.1858 |
0.5100 |
0.0 |
0.6678 |
0.5398 |
0.4859 |
0.9801 |
0.54 |
200 |
0.7149 |
0.4827 |
0.5995 |
0.7819 |
0.9016 |
0.3829 |
0.7254 |
0.0 |
0.8848 |
0.7904 |
0.5117 |
0.8007 |
0.3571 |
0.5615 |
0.0 |
0.6774 |
0.4859 |
0.4966 |
0.7374 |
0.59 |
220 |
0.6885 |
0.4950 |
0.6159 |
0.7894 |
0.9068 |
0.3910 |
0.8448 |
0.0 |
0.8656 |
0.7859 |
0.5169 |
0.7839 |
0.3448 |
0.5749 |
0.0 |
0.6942 |
0.5774 |
0.4895 |
1.0931 |
0.65 |
240 |
0.6884 |
0.4889 |
0.6134 |
0.7885 |
0.9106 |
0.3515 |
0.8590 |
0.0 |
0.8554 |
0.8118 |
0.5059 |
0.7804 |
0.3041 |
0.5561 |
0.0 |
0.7017 |
0.5858 |
0.4941 |
0.7106 |
0.7 |
260 |
0.8052 |
0.4413 |
0.5511 |
0.7563 |
0.9400 |
0.3677 |
0.3526 |
0.0 |
0.8507 |
0.8081 |
0.5382 |
0.7137 |
0.3061 |
0.2825 |
0.0 |
0.6967 |
0.5709 |
0.5193 |
0.7133 |
0.76 |
280 |
0.6507 |
0.5368 |
0.6542 |
0.8106 |
0.8931 |
0.6564 |
0.8631 |
0.0 |
0.9353 |
0.6824 |
0.5491 |
0.8105 |
0.5066 |
0.5893 |
0.0 |
0.7211 |
0.5953 |
0.5350 |
0.5858 |
0.81 |
300 |
0.6587 |
0.5212 |
0.6453 |
0.7979 |
0.9158 |
0.6788 |
0.6528 |
0.0 |
0.8872 |
0.8580 |
0.5241 |
0.8226 |
0.5180 |
0.5725 |
0.0 |
0.6814 |
0.5427 |
0.5113 |
1.9447 |
0.86 |
320 |
0.6674 |
0.5300 |
0.6268 |
0.8098 |
0.9182 |
0.4960 |
0.7161 |
0.0 |
0.9369 |
0.7516 |
0.5691 |
0.8130 |
0.4323 |
0.6061 |
0.0 |
0.6974 |
0.6098 |
0.5515 |
0.6724 |
0.92 |
340 |
0.6814 |
0.5191 |
0.6635 |
0.7901 |
0.8573 |
0.6785 |
0.8412 |
0.0 |
0.8680 |
0.8745 |
0.5251 |
0.7797 |
0.5249 |
0.5634 |
0.0 |
0.7007 |
0.5512 |
0.5139 |
0.6738 |
0.97 |
360 |
0.6131 |
0.5509 |
0.6663 |
0.8173 |
0.9235 |
0.6190 |
0.8401 |
0.0 |
0.8883 |
0.8535 |
0.5396 |
0.8125 |
0.5326 |
0.6451 |
0.0 |
0.7219 |
0.6215 |
0.5229 |
0.7131 |
1.03 |
380 |
0.6163 |
0.5582 |
0.6734 |
0.8172 |
0.8994 |
0.7309 |
0.8445 |
0.0 |
0.9282 |
0.7832 |
0.5272 |
0.8228 |
0.5820 |
0.6580 |
0.0 |
0.7059 |
0.6249 |
0.5137 |
0.8373 |
1.08 |
400 |
0.6077 |
0.5569 |
0.6737 |
0.8216 |
0.9115 |
0.7745 |
0.8120 |
0.0 |
0.9381 |
0.7219 |
0.5579 |
0.8242 |
0.5463 |
0.6524 |
0.0 |
0.7230 |
0.6089 |
0.5435 |
0.7344 |
1.14 |
420 |
0.6830 |
0.5195 |
0.6628 |
0.7866 |
0.9541 |
|
|
|
|
|
|
|
|
|
|
|
|
|