pipeline_tag: 图像分割
实例分割示例
内容:
使用Accelerate的PyTorch版本
该模型基于脚本 run_instance_segmentation_no_trainer.py
。
该脚本使用 🤗 Accelerate 在PyTorch中编写自定义训练循环,并支持在多种环境中运行,包括CPU、多CPU、GPU、多GPU和TPU,同时支持混合精度。
首先,配置环境:
accelerate config
回答有关训练环境的问题。然后运行:
accelerate test
此命令确保训练准备就绪。最后,启动训练:
accelerate launch run_instance_segmentation_no_trainer.py \
--model_name_or_path facebook/mask2former-swin-tiny-coco-instance \
--output_dir finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer \
--dataset_name qubvel-hf/ade20k-mini \
--do_reduce_labels \
--image_height 256 \
--image_width 256 \
--num_train_epochs 40 \
--learning_rate 1e-5 \
--lr_scheduler_type constant \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 2 \
--dataloader_num_workers 8 \
--push_to_hub
重新加载并执行推理
您可以轻松加载此训练好的模型并执行推理,如下所示:
import torch
import requests
import matplotlib.pyplot as plt
from PIL import Image
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor
image = Image.open(requests.get("http://farm4.staticflickr.com/3017/3071497290_31f0393363_z.jpg", stream=True).raw)
device = "cuda"
checkpoint = "qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer"
model = Mask2FormerForUniversalSegmentation.from_pretrained(checkpoint, device_map=device)
image_processor = Mask2FormerImageProcessor.from_pretrained(checkpoint)
inputs = image_processor(images=[image], return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
outputs = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])
print("掩码形状: ", outputs[0]["segmentation"].shape)
print("掩码值: ", outputs[0]["segmentation"].unique())
for segment in outputs[0]["segments_info"]:
print("分割段: ", segment)
掩码形状: torch.Size([427, 640])
掩码值: tensor([-1., 0., 1., 2., 3., 4., 5., 6.])
分割段: {'id': 0, 'label_id': 0, 'was_fused': False, 'score': 0.946127}
分割段: {'id': 1, 'label_id': 1, 'was_fused': False, 'score': 0.961582}
分割段: {'id': 2, 'label_id': 1, 'was_fused': False, 'score': 0.968367}
分割段: {'id': 3, 'label_id': 1, 'was_fused': False, 'score': 0.819527}
分割段: {'id': 4, 'label_id': 1, 'was_fused': False, 'score': 0.655761}
分割段: {'id': 5, 'label_id': 1, 'was_fused': False, 'score': 0.531299}
分割段: {'id': 6, 'label_id': 1, 'was_fused': False, 'score': 0.929477}
使用以下代码可视化结果:
import numpy as np
import matplotlib.pyplot as plt
segmentation = outputs[0]["segmentation"].numpy()
plt.figure(figsize=(10, 10))
plt.subplot(1, 2, 1)
plt.imshow(np.array(image))
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(segmentation)
plt.axis("off")
plt.show()
