库名称:transformers
许可证:其他
基础模型:nvidia/mit-b0
标签:
模型索引:
- 名称:segformer-b0-finetuned-morphpadver1-hgo-3
结果:[]
segformer-b0-finetuned-morphpadver1-hgo-3
该模型是基于nvidia/mit-b0在NICOPOI-9/morphpad_hgo_512_4class数据集上微调的版本。
在评估集上取得了以下结果:
- 损失:0.0870
- 平均交并比:0.9780
- 平均准确率:0.9889
- 整体准确率:0.9888
- 准确率0-0:0.9913
- 准确率0-90:0.9886
- 准确率90-0:0.9892
- 准确率90-90:0.9863
- 交并比0-0:0.9811
- 交并比0-90:0.9785
- 交并比90-0:0.9754
- 交并比90-90:0.9771
模型描述
需补充更多信息
预期用途与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用了以下超参数:
- 学习率:6e-05
- 训练批次大小:1
- 评估批次大小:1
- 随机种子:42
- 优化器:使用OptimizerNames.ADAMW_TORCH,参数betas=(0.9,0.999),epsilon=1e-08,无额外优化器参数
- 学习率调度器类型:线性
- 训练轮次:80
训练结果
训练损失 |
训练轮次 |
训练步数 |
验证损失 |
平均交并比 |
平均准确率 |
整体准确率 |
准确率0-0 |
准确率0-90 |
准确率90-0 |
准确率90-90 |
交并比0-0 |
交并比0-90 |
交并比90-0 |
交并比90-90 |
1.2394 |
2.5445 |
4000 |
1.2392 |
0.2273 |
0.3754 |
0.3738 |
0.4516 |
0.3985 |
0.2299 |
0.4215 |
0.2520 |
0.2205 |
0.1802 |
0.2565 |
1.0858 |
5.0891 |
8000 |
1.0986 |
0.2889 |
0.4462 |
0.4463 |
0.4510 |
0.3646 |
0.5196 |
0.4498 |
0.3208 |
0.2453 |
0.2792 |
0.3104 |
1.0059 |
7.6336 |
12000 |
1.0060 |
0.3295 |
0.4934 |
0.4935 |
0.4793 |
0.6104 |
0.4583 |
0.4256 |
0.3472 |
0.3209 |
0.3057 |
0.3442 |
0.9457 |
10.1781 |
16000 |
0.9497 |
0.3565 |
0.5236 |
0.5240 |
0.4976 |
0.6276 |
0.5356 |
0.4335 |
0.3777 |
0.3459 |
0.3490 |
0.3532 |
0.93 |
12.7226 |
20000 |
0.9072 |
0.3759 |
0.5397 |
0.5412 |
0.4649 |
0.6012 |
0.6437 |
0.4491 |
0.4073 |
0.3550 |
0.3549 |
0.3863 |
0.8403 |
15.2672 |
24000 |
0.8349 |
0.4263 |
0.5967 |
0.5959 |
0.6497 |
0.5299 |
0.6555 |
0.5517 |
0.4548 |
0.4083 |
0.3976 |
0.4443 |
0.8826 |
17.8117 |
28000 |
0.6734 |
0.5172 |
0.6784 |
0.6787 |
0.6590 |
0.7037 |
0.6902 |
0.6606 |
0.5517 |
0.4864 |
0.4837 |
0.5469 |
0.8028 |
20.3562 |
32000 |
0.4582 |
0.6843 |
0.8116 |
0.8120 |
0.7923 |
0.7953 |
0.8322 |
0.8268 |
0.6986 |
0.6686 |
0.6646 |
0.7056 |
0.8461 |
22.9008 |
36000 |
0.2845 |
0.8071 |
0.8931 |
0.8928 |
0.9089 |
0.8839 |
0.8825 |
0.8971 |
0.8322 |
0.7928 |
0.7850 |
0.8182 |
0.7034 |
25.4453 |
40000 |
0.3351 |
0.7724 |
0.8716 |
0.8713 |
0.8859 |
0.8680 |
0.8485 |
0.8839 |
0.7928 |
0.7649 |
0.7472 |
0.7849 |
1.0428 |
27.9898 |
44000 |
0.1882 |
0.8750 |
0.9334 |
0.9331 |
0.9467 |
0.9277 |
0.9323 |
0.9267 |
0.8912 |
0.8673 |
0.8647 |
0.8767 |
0.3497 |
30.5344 |
48000 |
0.1620 |
0.8982 |
0.9464 |
0.9461 |
0.9582 |
0.9539 |
0.9279 |
0.9455 |
0.9163 |
0.8878 |
0.8840 |
0.9046 |
0.0803 |
33.0789 |
52000 |
0.1314 |
0.9187 |
0.9577 |
0.9575 |
0.9711 |
0.9517 |
0.9508 |
0.9574 |
0.9300 |
0.9101 |
0.9121 |
0.9224 |
0.1394 |
35.6234 |
56000 |
0.1271 |
0.9228 |
0.9598 |
0.9597 |
0.9648 |
0.9612 |
0.9530 |
0.9603 |
0.9332 |
0.9163 |
0.9167 |
0.9250 |
0.0579 |
38.1679 |
60000 |
0.1170 |
0.9351 |
0.9665 |
0.9664 |
0.9723 |
0.9652 |
0.9619 |
0.9665 |
0.9446 |
0.9300 |
0.9282 |
0.9377 |
0.1097 |
40.7125 |
64000 |
0.1121 |
0.9402 |
0.9690 |
0.9691 |
0.9634 |
0.9748 |
0.9732 |
0.9644 |
0.9477 |
0.9380 |
0.9334 |
0.9416 |
0.0615 |
43.2570 |
68000 |
0.1069 |
0.9458 |
0.9720 |
0.9721 |
0.9707 |
0.9713 |
0.9777 |
0.9685 |
0.9523 |
0.9424 |
0.9426 |
0.9459 |
0.0425 |
45.8015 |
72000 |
0.0967 |
0.9540 |
0.9764 |
0.9764 |
0.9789 |
0.9740 |
0.9798 |
0.9729 |
0.9609 |
0.9506 |
0.9514 |
0.9529 |
0.0396 |
48.3461 |
76000 |
0.0991 |
0.9599 |
0.9795 |
0.9795 |
0.9827 |
0.9766 |
0.9783 |
0.9805 |
0.9656 |
0.9562 |
0.9560 |
0.9617 |
0.4319 |
50.8906 |
80000 |
0.0975 |
0.9583 |
0.9786 |
0.9787 |
0.9759 |
0.9826 |
0.9769 |
0.9792 |
0.9607 |
0.9566 |
0.9551 |
0.9608 |
0.0299 |
53.4351 |
84000 |
0.0959 |
0.9662 |
0.9828 |
0.9827 |
0.9858 |
0.9837 |
0.9807 |
0.9811 |
0.9712 |
0.9655 |
0.9637 |
0.9644 |
0.0282 |
55.9796 |
88000 |
0.0933 |
0.9687 |
0.9841 |
0.9841 |
0.9866 |
0.9830 |
0.9823 |
0.9846 |
0.9729 |
0.9665 |
0.9655 |
0.9698 |
0.1038 |
58.5242 |
92000 |
0.0864 |
0.9707 |
0.9852 |
0.9851 |
0.9882 |
0.9874 |
0.9842 |
0.9809 |
0.9727 |
0.9709 |
0.9698 |
0.9695 |
0.0246 |
61.0687 |
96000 |
0.0990 |
0.9722 |
0.9859 |
0.9859 |
0.9885 |
0.9873 |
0.9847 |
0.9832 |
0.9764 |
0.9716 |
0.9706 |
0.9703 |
0.0208 |
63.6132 |
100000 |
0.0839 |
0.9749 |
0.9873 |
0.9873 |
0.9901 |
0.9897 |
0.9850 |
0.9845 |
0.9781 |
0.9748 |
0.9726 |
0.9743 |
0.0749 |
66.1578 |
104000 |
0.0874 |
0.9761 |
0.9879 |
0.9879 |
0.9901 |
0.9888 |
0.9875 |
0.9851 |
0.9798 |
0.9757 |
0.9734 |
0.9753 |
0.0798 |
68.7023 |
108000 |
0.0866 |
0.9753 |
0.9875 |
0.9875 |
0.9908 |
0.9881 |
0.9883 |
0.9830 |
0.9792 |
0.9759 |
0.9722 |
0.9740 |
0.1236 |
71.2468 |
112000 |
0.0933 |
0.9775 |
0.9886 |
0.9886 |
0.9911 |
0.9895 |
0.9870 |
0.9868 |
0.9813 |
0.9773 |
0.9748 |
0.9765 |
0.0165 |
73.7913 |
116000 |
0.0894 |
0.9785 |
0.9891 |
0.9891 |
0.9902 |
0.9912 |
0.9867 |
0.9886 |
0.9818 |
0.9782 |
0.9759 |
0.9783 |
0.0204 |
76.3359 |
120000 |
0.0885 |
0.9792 |
0.9895 |
0.9895 |
0.9909 |
0.9913 |
0.9874 |
0.9884 |
0.9823 |
0.9791 |
0.9766 |
0.9788 |
0.7823 |
78.8804 |
124000 |
0.0870 |
0.9780 |
0.9889 |
0.9888 |
0.9913 |
0.9886 |
0.9892 |
0.9863 |
0.9811 |
0.9785 |
0.9754 |
0.9771 |
框架版本
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0