🚀 vit_small_patch16_224.dino模型卡
这是一个视觉变换器(ViT)图像特征模型,采用自监督DINO方法进行训练,可用于图像特征提取等任务。
🚀 快速开始
本模型是一个视觉变换器(ViT)图像特征模型,使用自监督DINO方法进行训练,可用于图像分类和特征提取。
✨ 主要特性
- 采用自监督DINO方法训练,能有效学习图像特征。
- 可用于图像分类和图像嵌入提取任务。
📦 安装指南
文档未提及安装步骤,可参考timm
库的官方安装说明进行安装。
💻 使用示例
基础用法
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_small_patch16_224.dino', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
高级用法
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_small_patch16_224.dino',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
📚 详细文档
模型详情
属性 |
详情 |
模型类型 |
图像分类 / 特征骨干网络 |
模型统计信息 |
参数数量(M):21.7;GMACs:4.3;激活值数量(M):8.2;图像大小:224 x 224 |
相关论文 |
Emerging Properties in Self-Supervised Vision Transformers: https://arxiv.org/abs/2104.14294;An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2 |
预训练数据集 |
ImageNet-1k |
原始代码库 |
https://github.com/facebookresearch/dino |
模型比较
可在timm 模型结果中查看该模型的数据集和运行时指标。
📄 许可证
本项目采用Apache-2.0许可证。
📚 引用
@inproceedings{caron2021emerging,
title={Emerging properties in self-supervised vision transformers},
author={Caron, Mathilde and Touvron, Hugo and Misra, Ishan and J{'e}gou, Herv{'e} and Mairal, Julien and Bojanowski, Piotr and Joulin, Armand},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={9650--9660},
year={2021}
}
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}