license: apache-2.0
library_name: timm
tags:
vit_base_patch16_224.dino 模型卡
基于自监督DINO方法训练的Vision Transformer(ViT)图像特征模型。
模型详情
- 模型类型: 图像分类/特征主干网络
- 模型统计:
- 参数量(百万): 85.8
- GMACs计算量: 16.9
- 激活值(百万): 16.5
- 图像尺寸: 224 x 224
- 相关论文:
- 《自监督视觉Transformer的新兴特性》: https://arxiv.org/abs/2104.14294
- 《一张图像等于16x16个单词:大规模图像识别的Transformer》: https://arxiv.org/abs/2010.11929v2
- 预训练数据集: ImageNet-1k
- 原始实现: https://github.com/facebookresearch/dino
模型使用
图像分类
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_base_patch16_224.dino', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
图像嵌入
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_patch16_224.dino',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
模型比较
在timm的模型结果中探索该模型的数据集和运行时指标。
引用
@inproceedings{caron2021emerging,
title={自监督视觉Transformer的新兴特性},
author={Caron, Mathilde and Touvron, Hugo and Misra, Ishan and J{'e}gou, Herv{'e} and Mairal, Julien and Bojanowski, Piotr and Joulin, Armand},
booktitle={IEEE/CVF国际计算机视觉会议论文集},
pages={9650--9660},
year={2021}
}
@article{dosovitskiy2020vit,
title={一张图像等于16x16个单词:大规模图像识别的Transformer},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch图像模型},
year = {2019},
publisher = {GitHub},
journal = {GitHub仓库},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}