🚀 番茄叶疾病分类 - ResNet50
本模型是基于microsoft/resnet-50在wellCh4n/tomato-leaf-disease-image数据集上进行微调的版本。它在评估集上取得了以下成果:
🚀 快速开始
本模型可用于番茄叶疾病的分类任务,基于微调后的ResNet50模型,在评估集上展现出了较高的准确率。
📚 详细文档
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率:2e-05
- 训练批次大小:16
- 评估批次大小:8
- 随机种子:1337
- 优化器:使用OptimizerNames.ADAMW_TORCH,其中betas=(0.9, 0.999),epsilon=1e-08,无额外优化器参数
- 学习率调度器类型:线性
- 训练轮数:100.0
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
准确率 |
1.6891 |
1.0 |
965 |
1.6572 |
0.3488 |
1.1351 |
2.0 |
1930 |
1.1593 |
0.7126 |
0.7767 |
3.0 |
2895 |
0.6135 |
0.8168 |
0.7963 |
4.0 |
3860 |
0.3818 |
0.8796 |
0.547 |
5.0 |
4825 |
0.2581 |
0.9302 |
0.5104 |
6.0 |
5790 |
0.2106 |
0.9438 |
0.3997 |
7.0 |
6755 |
0.1579 |
0.9563 |
0.2527 |
8.0 |
7720 |
0.1292 |
0.9604 |
0.3268 |
9.0 |
8685 |
0.1154 |
0.9659 |
0.2595 |
10.0 |
9650 |
0.1018 |
0.9699 |
0.2269 |
11.0 |
10615 |
0.0869 |
0.9743 |
0.2515 |
12.0 |
11580 |
0.0783 |
0.9747 |
0.2604 |
13.0 |
12545 |
0.0710 |
0.9794 |
0.2583 |
14.0 |
13510 |
0.0704 |
0.9783 |
0.2004 |
15.0 |
14475 |
0.0603 |
0.9824 |
0.2552 |
16.0 |
15440 |
0.0565 |
0.9835 |
0.2192 |
17.0 |
16405 |
0.0553 |
0.9846 |
0.3443 |
18.0 |
17370 |
0.0508 |
0.9831 |
0.1954 |
19.0 |
18335 |
0.0530 |
0.9846 |
0.2685 |
20.0 |
19300 |
0.0430 |
0.9864 |
0.1277 |
21.0 |
20265 |
0.0406 |
0.9864 |
0.1388 |
22.0 |
21230 |
0.0404 |
0.9872 |
0.2379 |
23.0 |
22195 |
0.0399 |
0.9875 |
0.1018 |
24.0 |
23160 |
0.0441 |
0.9879 |
0.2155 |
25.0 |
24125 |
0.0364 |
0.9905 |
0.1699 |
26.0 |
25090 |
0.0398 |
0.9875 |
0.2772 |
27.0 |
26055 |
0.0364 |
0.9872 |
0.1669 |
28.0 |
27020 |
0.0369 |
0.9894 |
0.0867 |
29.0 |
27985 |
0.0339 |
0.9901 |
0.1314 |
30.0 |
28950 |
0.0322 |
0.9905 |
0.082 |
31.0 |
29915 |
0.0362 |
0.9879 |
0.0393 |
32.0 |
30880 |
0.0332 |
0.9908 |
0.0812 |
33.0 |
31845 |
0.0329 |
0.9905 |
0.2634 |
34.0 |
32810 |
0.0333 |
0.9897 |
0.1581 |
35.0 |
33775 |
0.0337 |
0.9901 |
0.168 |
36.0 |
34740 |
0.0298 |
0.9890 |
0.0653 |
37.0 |
35705 |
0.0311 |
0.9905 |
0.0998 |
38.0 |
36670 |
0.0326 |
0.9901 |
0.0947 |
39.0 |
37635 |
0.0288 |
0.9919 |
0.1126 |
40.0 |
38600 |
0.0272 |
0.9916 |
0.1319 |
41.0 |
39565 |
0.0272 |
0.9919 |
0.0446 |
42.0 |
40530 |
0.0283 |
0.9916 |
0.2453 |
43.0 |
41495 |
0.0281 |
0.9919 |
0.0708 |
44.0 |
42460 |
0.0263 |
0.9923 |
0.0441 |
45.0 |
43425 |
0.0262 |
0.9916 |
0.0936 |
46.0 |
44390 |
0.0252 |
0.9919 |
0.1565 |
47.0 |
45355 |
0.0284 |
0.9923 |
0.0404 |
48.0 |
46320 |
0.0263 |
0.9930 |
0.0357 |
49.0 |
47285 |
0.0240 |
0.9930 |
0.0971 |
50.0 |
48250 |
0.0285 |
0.9916 |
0.0582 |
51.0 |
49215 |
0.0251 |
0.9923 |
0.048 |
52.0 |
50180 |
0.0257 |
0.9919 |
0.1218 |
53.0 |
51145 |
0.0252 |
0.9930 |
0.0576 |
54.0 |
52110 |
0.0227 |
0.9930 |
0.0723 |
55.0 |
53075 |
0.0227 |
0.9930 |
0.1347 |
56.0 |
54040 |
0.0242 |
0.9941 |
0.1684 |
57.0 |
55005 |
0.0255 |
0.9927 |
0.0525 |
58.0 |
55970 |
0.0250 |
0.9938 |
0.1031 |
59.0 |
56935 |
0.0265 |
0.9923 |
0.0768 |
60.0 |
57900 |
0.0244 |
0.9941 |
0.0416 |
61.0 |
58865 |
0.0207 |
0.9934 |
0.1783 |
62.0 |
59830 |
0.0237 |
0.9941 |
0.1253 |
63.0 |
60795 |
0.0269 |
0.9912 |
0.0448 |
64.0 |
61760 |
0.0236 |
0.9941 |
0.0967 |
65.0 |
62725 |
0.0230 |
0.9934 |
0.0486 |
66.0 |
63690 |
0.0229 |
0.9941 |
0.0442 |
67.0 |
64655 |
0.0256 |
0.9934 |
0.0526 |
68.0 |
65620 |
0.0210 |
0.9945 |
0.0949 |
69.0 |
66585 |
0.0250 |
0.9938 |
0.0674 |
70.0 |
67550 |
0.0228 |
0.9938 |
0.1554 |
71.0 |
68515 |
0.0240 |
0.9941 |
0.0598 |
72.0 |
69480 |
0.0233 |
0.9945 |
0.0632 |
73.0 |
70445 |
0.0218 |
0.9949 |
0.0951 |
74.0 |
71410 |
0.0234 |
0.9945 |
0.1634 |
75.0 |
72375 |
0.0245 |
0.9945 |
0.2039 |
76.0 |
73340 |
0.0222 |
0.9938 |
0.0741 |
77.0 |
74305 |
0.0226 |
0.9949 |
0.0923 |
78.0 |
75270 |
0.0218 |
0.9949 |
0.0351 |
79.0 |
76235 |
0.0230 |
0.9945 |
0.1234 |
80.0 |
77200 |
0.0244 |
0.9934 |
0.0659 |
81.0 |
78165 |
0.0232 |
0.9945 |
0.0393 |
82.0 |
79130 |
0.0210 |
0.9949 |
0.053 |
83.0 |
80095 |
0.0205 |
0.9945 |
0.0575 |
84.0 |
81060 |
0.0210 |
0.9945 |
0.0651 |
85.0 |
82025 |
0.0198 |
0.9949 |
0.0875 |
86.0 |
82990 |
0.0210 |
0.9945 |
0.1006 |
87.0 |
83955 |
0.0214 |
0.9949 |
0.0466 |
88.0 |
84920 |
0.0211 |
0.9941 |
0.088 |
89.0 |
85885 |
0.0233 |
0.9923 |
0.1162 |
90.0 |
86850 |
0.0197 |
0.9956 |
0.0641 |
91.0 |
87815 |
0.0213 |
0.9949 |
0.0867 |
92.0 |
88780 |
0.0203 |
0.9952 |
0.0305 |
93.0 |
89745 |
0.0212 |
0.9941 |
0.1009 |
94.0 |
90710 |
0.0200 |
0.9956 |
0.084 |
95.0 |
91675 |
0.0200 |
0.9960 |
0.0409 |
96.0 |
92640 |
0.0213 |
0.9949 |
0.107 |
97.0 |
93605 |
0.0210 |
0.9934 |
0.0558 |
98.0 |
94570 |
0.0206 |
0.9952 |
0.0644 |
99.0 |
95535 |
0.0219 |
0.9949 |
0.0617 |
100.0 |
96500 |
0.0205 |
0.9941 |
框架版本
- Transformers 4.48.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
📄 许可证
本项目采用Apache 2.0许可证。