许可证:apache-2.0
库名称:timm
标签:
- 图像特征提取
- timm
- transformers
数据集:
- imagenet-21k
模型卡片:vit_base_r50_s16_224.orig_in21k
一个结合了ResNet与Vision Transformer(ViT)的混合图像分类模型。由论文作者在JAX框架下基于ImageNet-21k预训练,后由Ross Wightman移植到PyTorch。此模型不含分类头,适用于特征提取和微调场景。
模型详情
- 模型类型: 图像分类/特征主干网络
- 模型统计:
- 参数量(百万):97.9
- 计算量(GMACs):20.9
- 激活值(百万):27.9
- 图像尺寸:224 x 224
- 相关论文:
- 《An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale》:https://arxiv.org/abs/2010.11929v2
- 数据集: ImageNet-21k
- 原始实现: https://github.com/google-research/vision_transformer
模型使用
图像分类
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_base_r50_s16_224.orig_in21k', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
图像嵌入
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_r50_s16_224.orig_in21k',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
模型对比
访问timm的模型结果库探索该模型的数据集和运行时指标。
引用
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}