许可协议: mit
库名称: timm
标签:
- 图像特征提取
- timm
- transformers
数据集:
- imagenet-22k
模型卡片 focalnet_huge_fl4.ms_in22k
一个FocalNet图像分类模型。由论文作者在ImageNet-22k上预训练完成。
模型详情
- 模型类型: 图像分类/特征主干网络
- 模型统计:
- 参数量(M): 686.5
- GMACs运算量: 118.9
- 激活值(M): 113.3
- 图像尺寸: 224 x 224
- 相关论文:
- 焦点调制网络: https://arxiv.org/abs/2203.11926
- 原始实现: https://github.com/microsoft/FocalNet
- 数据集: ImageNet-22k
模型使用
图像分类
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('focalnet_huge_fl4.ms_in22k', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
特征图提取
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'focalnet_huge_fl4.ms_in22k',
pretrained=True,
features_only=True,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
for o in output:
print(o.shape)
图像嵌入
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'focalnet_huge_fl4.ms_in22k',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
模型比较
在timm的模型结果中探索该模型的数据集和运行时指标。
引用
@misc{yang2022focal,
title={Focal Modulation Networks},
author={Jianwei Yang and Chunyuan Li and Xiyang Dai and Jianfeng Gao},
journal={Advances in Neural Information Processing Systems (NeurIPS)},
year={2022}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}