许可证: mit
标签:
- 训练生成
基础模型: law-ai/InLegalBERT
指标:
- 准确率
- 精确率
- 召回率
模型索引:
- 名称: case-analysis-InLegalBERT
结果: []
指标
- 损失: 1.0434
- 准确率: 0.8218
- 精确率: 0.8145
- 召回率: 0.8218
- 宏观精确率: 0.6907
- 宏观召回率: 0.6533
- 宏观假正率: 0.0897
- 加权假正率: 0.0674
- 加权特异度: 0.8528
- 宏观特异度: 0.9187
- 加权敏感度: 0.8218
- 宏观敏感度: 0.6533
- 微观F1分数: 0.8218
- 宏观F1分数: 0.6690
- 加权F1分数: 0.8159
- 运行时间: 198.6459
- 每秒样本数: 2.2600
- 每秒步数: 0.2870
case-analysis-InLegalBERT
该模型是基于law-ai/InLegalBERT在未知数据集上微调的版本。在评估集上取得了以下结果:
- 损失: 1.0434
- 准确率: 0.8218
- 精确率: 0.8145
- 召回率: 0.8218
- 宏观精确率: 0.6439
- 宏观召回率: 0.6295
- 宏观假正率: 0.0890
- 加权假正率: 0.0674
- 加权特异度: 0.8544
- 宏观特异度: 0.9191
- 加权敏感度: 0.8218
- 宏观敏感度: 0.6295
- 微观F1分数: 0.8218
- 宏观F1分数: 0.6335
- 加权F1分数: 0.8106
模型描述
需要更多信息
预期用途与限制
需要更多信息
训练与评估数据
需要更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率: 5e-05
- 训练批次大小: 8
- 评估批次大小: 8
- 随机种子: 42
- 优化器: Adam,参数beta=(0.9,0.999),epsilon=1e-08
- 学习率调度器类型: 线性
- 训练轮数: 30
- 混合精度训练: 原生AMP
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
准确率 |
精确率 |
召回率 |
宏观精确率 |
宏观召回率 |
宏观假正率 |
加权假正率 |
加权特异度 |
宏观特异度 |
加权敏感度 |
宏观敏感度 |
微观F1 |
宏观F1 |
加权F1 |
无记录 |
1.0 |
224 |
0.6546 |
0.8018 |
0.7632 |
0.8018 |
0.5777 |
0.6106 |
0.0978 |
0.0761 |
0.8432 |
0.9112 |
0.8018 |
0.6106 |
0.8018 |
0.5936 |
0.7820 |
无记录 |
2.0 |
448 |
0.6831 |
0.8129 |
0.7732 |
0.8129 |
0.5845 |
0.6154 |
0.0923 |
0.0712 |
0.8554 |
0.9171 |
0.8129 |
0.6154 |
0.8129 |
0.5996 |
0.7926 |
0.607 |
3.0 |
672 |
0.7626 |
0.8263 |
0.8060 |
0.8263 |
0.6773 |
0.6341 |
0.0885 |
0.0655 |
0.8464 |
0.9182 |
0.8263 |
0.6341 |
0.8263 |
0.6362 |
0.8105 |
0.607 |
4.0 |
896 |
0.7839 |
0.8085 |
0.7991 |
0.8085 |
0.6391 |
0.6306 |
0.0896 |
0.0732 |
0.8754 |
0.9210 |
0.8085 |
0.6306 |
0.8085 |
0.6314 |
0.8017 |
0.316 |
5.0 |
1120 |
0.9381 |
0.8263 |
0.8127 |
0.8263 |
0.6688 |
0.6573 |
0.0822 |
0.0655 |
0.8780 |
0.9261 |
0.8263 |
0.6573 |
0.8263 |
0.6514 |
0.8161 |
0.316 |
6.0 |
1344 |
1.0434 |
0.8218 |
0.8145 |
0.8218 |
0.6907 |
0.6533 |
0.0897 |
0.0674 |
0.8528 |
0.9187 |
0.8218 |
0.6533 |
0.8218 |
0.6690 |
0.8159 |
0.1513 |
7.0 |
1568 |
1.2182 |
0.8018 |
0.8066 |
0.8018 |
0.6382 |
0.6399 |
0.0916 |
0.0761 |
0.8802 |
0.9205 |
0.8018 |
0.6399 |
0.8018 |
0.6375 |
0.8030 |
0.1513 |
8.0 |
1792 |
1.3193 |
0.8285 |
0.8070 |
0.8285 |
0.6566 |
0.6280 |
0.0882 |
0.0645 |
0.8521 |
0.9202 |
0.8285 |
0.6280 |
0.8285 |
0.6376 |
0.8152 |
0.0491 |
9.0 |
2016 |
1.3169 |
0.8330 |
0.8180 |
0.8330 |
0.6950 |
0.6555 |
0.0828 |
0.0627 |
0.8653 |
0.9246 |
0.8330 |
0.6555 |
0.8330 |
0.6687 |
0.8235 |
0.0491 |
10.0 |
2240 |
1.4460 |
0.8307 |
0.8109 |
0.8307 |
0.6584 |
0.6291 |
0.0868 |
0.0636 |
0.8533 |
0.9210 |
0.8307 |
0.6291 |
0.8307 |
0.6398 |
0.8184 |
0.0491 |
11.0 |
2464 |
1.4100 |
0.8419 |
0.8166 |
0.8419 |
0.6718 |
0.6399 |
0.0806 |
0.0589 |
0.8642 |
0.9265 |
0.8419 |
0.6399 |
0.8419 |
0.6464 |
0.8263 |
0.0148 |
12.0 |
2688 |
1.5364 |
0.8218 |
0.8105 |
0.8218 |
0.6661 |
0.6340 |
0.0903 |
0.0674 |
0.8505 |
0.9181 |
0.8218 |
0.6340 |
0.8218 |
0.6469 |
0.8137 |
0.0148 |
13.0 |
2912 |
1.5380 |
0.8307 |
0.8118 |
0.8307 |
0.6596 |
0.6304 |
0.0870 |
0.0636 |
0.8512 |
0.9205 |
0.8307 |
0.6304 |
0.8307 |
0.6409 |
0.8185 |
0.0031 |
14.0 |
3136 |
1.6139 |
0.8218 |
0.8108 |
0.8218 |
0.6451 |
0.6353 |
0.0860 |
0.0674 |
0.8685 |
0.9226 |
0.8218 |
0.6353 |
0.8218 |
0.6396 |
0.8159 |
0.0031 |
15.0 |
3360 |
1.6356 |
0.8263 |
0.8117 |
0.8263 |
0.6626 |
0.6477 |
0.0842 |
0.0655 |
0.8700 |
0.9241 |
0.8263 |
0.6477 |
0.8263 |
0.6529 |
0.8183 |
0.0043 |
16.0 |
3584 |
1.6745 |
0.8241 |
0.7994 |
0.8241 |
0.6244 |
0.6229 |
0.0884 |
0.0664 |
0.8543 |
0.9196 |
0.8241 |
0.6229 |
0.8241 |
0.6231 |
0.8108 |
0.0043 |
17.0 |
3808 |
1.7867 |
0.8085 |
0.7946 |
0.8085 |
0.6221 |
0.6336 |
0.0906 |
0.0732 |
0.8678 |
0.9191 |
0.8085 |
0.6336 |
0.8085 |
0.6229 |
0.7996 |
0.0008 |
18.0 |
4032 |
1.7511 |
0.8151 |
0.7971 |
0.8151 |
0.6110 |
0.6216 |
0.0901 |
0.0703 |
0.8644 |
0.9199 |
0.8151 |
0.6216 |
0.8151 |
0.6145 |
0.8046 |
0.0008 |
19.0 |
4256 |
1.5909 |
0.8441 |
0.8079 |
0.8441 |
0.6260 |
0.6374 |
0.0792 |
0.0580 |
0.8670 |
0.9278 |
0.8441 |
0.6374 |
0.8441 |
0.6311 |
0.8249 |
0.0008 |
20.0 |
4480 |
1.5721 |
0.8463 |
0.8212 |
0.8463 |
0.6727 |
0.6546 |
0.0761 |
0.0571 |
0.8753 |
0.9304 |
0.8463 |
0.6546 |
0.8463 |
0.6547 |
0.8316 |
0.0039 |
21.0 |
4704 |
1.5819 |
0.8396 |
0.8054 |
0.8396 |
0.6337 |
0.6200 |
0.0843 |
0.0599 |
0.8527 |
0.9231 |
0.8396 |
0.6200 |
0.8396 |
0.6245 |
0.8199 |
0.0039 |
22.0 |
4928 |
1.5906 |
0.8486 |
0.8236 |
0.8486 |
0.6814 |
0.6512 |
0.0770 |
0.0562 |
0.8680 |
0.9291 |
0.8486 |
0.6512 |
0.8486 |
0.6570 |
0.8333 |
0.0005 |
23.0 |
5152 |
1.7133 |
0.8263 |
0.8047 |
0.8263 |
0.6403 |
0.6431 |
0.0831 |
0.0655 |
0.8745 |
0.9252 |
0.8263 |
0.6431 |
0.8263 |
0.6367 |
0.8143 |
0.0005 |
24.0 |
5376 |
1.7813 |
0.8241 |
0.8022 |
0.8241 |
0.6515 |
0.6290 |
0.0894 |
0.0664 |
0.8490 |
0.9183 |
0.8241 |
0.6290 |
0.8241 |
0.6348 |
0.8108 |
0.0033 |
25.0 |
5600 |
1.7983 |
0.8218 |
0.8001 |
0.8218 |
0.6485 |
0.6281 |
0.0902 |
0.0674 |
0.8486 |
0.9176 |
0.8218 |
0.6281 |
0.8218 |
0.6328 |
0.8088 |
0.0033 |
26.0 |
5824 |
1.8070 |
0.8218 |
0.8001 |
0.8218 |
0.6485 |
0.6281 |
0.0902 |
0.0674 |
0.8486 |
0.9176 |
0.8218 |
0.6281 |
0.8218 |
0.6328 |
0.8088 |
0.0 |
27.0 |
6048 |
1.8198 |
0.8218 |
0.8024 |
0.8218 |
0.6439 |
0.6295 |
0.0890 |
0.0674 |
0.8544 |
0.9191 |
0.8218 |
0.6295 |
0.8218 |
0.6335 |
0.8106 |
0.0 |
28.0 |
6272 |
1.8243 |
0.8218 |
0.8024 |
0.8218 |
0.6439 |
0.6295 |
0.0890 |
0.0674 |
0.8544 |
0.9191 |
0.8218 |
0.6295 |
0.8218 |
0.6335 |
0.8106 |
0.0 |
29.0 |
6496 |
1.8277 |
0.8218 |
0.8024 |
0.8218 |
0.6439 |
0.6295 |
0.0890 |
0.0674 |
0.8544 |
0.9191 |
0.8218 |
0.6295 |
0.8218 |
0.6335 |
0.8106 |
0.0003 |
30.0 |
6720 |
1.8292 |
0.8218 |
0.8024 |
0.8218 |
0.6439 |
0.6295 |
0.0890 |
0.0674 |
0.8544 |
0.9191 |
0.8218 |
0.6295 |
0.8218 |
0.6335 |
0.8106 |
框架版本
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2