语言:
- 粤语
语言编码:
- zh-HK
数据集:
- 普通语音
评估指标:
- 字错误率(CER)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证:
- Apache-2.0
模型索引:
- 名称: wav2vec2-large-xlsr-粤语版
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: 普通语音 zh-HK
类型: common_voice
参数: zh-HK
评估指标:
- 名称: 测试CER
类型: cer
值: 15.36
Wav2Vec2-Large-XLSR-53-粤语版
基于facebook/wav2vec2-large-xlsr-53模型,使用普通语音粤语数据集进行微调。使用该模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),如下所示:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
model = Wav2Vec2ForCTC.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2))
评估
可通过以下方式在普通语音中文(香港)测试数据上评估模型性能。
!pip install jiwer
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import argparse
lang_id = "zh-HK"
model_id = "ctl/wav2vec2-large-xlsr-cantonese"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:"\“\%\‘\”\�\.\⋯\!\-\:\–\。\》\,\)\,\?\;\~\~\…\︰\,\(\」\‧\《\﹔\、\—\/\,\「\﹖\·\']'
test_dataset = load_dataset("common_voice", f"{lang_id}", split="test")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained(f"{model_id}")
model = Wav2Vec2ForCTC.from_pretrained(f"{model_id}")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=16)
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 15.51%
训练过程
使用了普通语音的train
和validation
数据集进行训练。
训练脚本将发布在此处