语言: 葡萄牙语
许可证: Apache-2.0
数据集:
- Common Voice
- Mozilla基金会/common_voice_6_0
评估指标:
- 词错误率(WER)
- 字错误率(CER)
标签:
- 音频
- 自动语音识别
- HF-ASR排行榜
- Mozilla基金会/common_voice_6_0
- 葡萄牙语(pt)
- 鲁棒语音事件
- 语音
- XLSR微调周
模型索引:
- 名称: Jonatas Grosman的XLSR Wav2Vec2葡萄牙语模型
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice葡萄牙语
类型: common_voice
参数: pt
指标:
- 名称: 测试WER
类型: wer
值: 11.31
- 名称: 测试CER
类型: cer
值: 3.74
- 名称: 测试WER (+语言模型)
类型: wer
值: 9.01
- 名称: 测试CER (+语言模型)
类型: cer
值: 3.21
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: 鲁棒语音事件-开发数据
类型: speech-recognition-community-v2/dev_data
参数: pt
指标:
- 名称: 开发集WER
类型: wer
值: 42.1
- 名称: 开发集CER
类型: cer
值: 17.93
- 名称: 开发集WER (+语言模型)
类型: wer
值: 36.92
- 名称: 开发集CER (+语言模型)
类型: cer
值: 16.88
针对葡萄牙语语音识别微调的XLSR-53大模型
基于Common Voice 6.1的训练集和验证集,对facebook/wav2vec2-large-xlsr-53进行葡萄牙语微调。
使用该模型时,请确保语音输入采样率为16kHz。
本模型的微调得益于OVHcloud慷慨提供的GPU算力资源 :)
训练脚本详见: https://github.com/jonatasgrosman/wav2vec2-sprint
使用方式
该模型可直接使用(无需语言模型),如下所示...
使用HuggingSound库:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
自定义推理脚本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("原文:", test_dataset[i]["sentence"])
print("预测结果:", predicted_sentence)
原文 |
预测结果 |
NEM O RADAR NEM OS OUTROS INSTRUMENTOS DETECTARAM O BOMBARDEIRO STEALTH. |
NEMHUM VADAN OS OLTWES INSTRUMENTOS DE TTÉÃN UM BOMBERDEIRO OSTER |
PEDIR DINHEIRO EMPRESTADO ÀS PESSOAS DA ALDEIA |
E DIR ENGINHEIRO EMPRESTAR AS PESSOAS DA ALDEIA |
OITO |
OITO |
TRANCÁ-LOS |
TRANCAUVOS |
REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
O YOUTUBE AINDA É A MELHOR PLATAFORMA DE VÍDEOS. |
YOUTUBE AINDA É A MELHOR PLATAFOMA DE VÍDEOS |
MENINA E MENINO BEIJANDO NAS SOMBRAS |
MENINA E MENINO BEIJANDO NAS SOMBRAS |
EU SOU O SENHOR |
EU SOU O SENHOR |
DUAS MULHERES QUE SENTAM-SE PARA BAIXO LENDO JORNAIS. |
DUAS MIERES QUE SENTAM-SE PARA BAICLANE JODNÓI |
EU ORIGINALMENTE ESPERAVA |
EU ORIGINALMENTE ESPERAVA |
评估
- 在
mozilla-foundation/common_voice_6_0
的test
集上评估
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset mozilla-foundation/common_voice_6_0 --config pt --split test
- 在
speech-recognition-community-v2/dev_data
上评估
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
引用
如需引用本模型,请使用:
@misc{grosman2021xlsr53-large-portuguese,
title={针对葡萄牙语语音识别微调的{XLSR}-53大模型},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese}},
year={2021}
}