语言: tr
数据集:
- common_voice
评估指标:
- wer
标签:
- 音频
- 自动语音识别
- 语音
- xlsr微调周
许可证: apache-2.0
模型索引:
- 名称: Wav2Vec2-Large-XLSR-53-Turkish
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: Common Voice tr
类型: common_voice
参数: tr
评估指标:
- 名称: 测试WER
类型: wer
值: 17.46
Wav2Vec2-Large-XLSR-53-Turkish
基于facebook/wav2vec2-large-xlsr-53在土耳其语Common Voice数据集上微调而成。使用该模型时,请确保语音输入采样率为16kHz。
使用方式
该模型可直接使用(无需语言模型)如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from unicode_tr import unicode_tr
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估
可在Common Voice土耳其语测试数据上按如下方式评估模型性能:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "tr", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
\tbatch["sentence"] = str(unicode_tr(re.sub(chars_to_ignore_regex, "", batch["sentence"])).lower())
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
\twith torch.no_grad():
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
\tpred_ids = torch.argmax(logits, dim=-1)
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\treturn batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 17.46%
训练说明
由于常规lower()方法对土耳其语支持不佳,使用unicode_tr包实现句子小写转换。
鉴于土耳其语训练数据有限,采用K折交叉验证(k=5)策略进行训练。最终上传的是5次训练中表现最佳的模型。训练参数如下:
--num_train_epochs="30" \
--per_device_train_batch_size="32" \
--evaluation_strategy="steps" \
--activation_dropout="0.055" \
--attention_dropout="0.094" \
--feat_proj_dropout="0.04" \
--hidden_dropout="0.047" \
--layerdrop="0.041" \
--learning_rate="2.34e-4" \
--mask_time_prob="0.082" \
--warmup_steps="250" \
所有训练在GeForce RTX 3090显卡上耗时约20小时完成。