语言: cv
数据集:
- common_voice
指标:
- wer
标签:
- 音频
- 自动语音识别
- 语音
- xlsr微调周
许可证: apache-2.0
模型索引:
- 名称: Gagan Bhatia的wav2vec2-xlsr-chuvash
结果:
- 任务:
名称: 语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice cv
类型: common_voice
参数: cv
指标:
- 名称: 测试WER
类型: wer
值: 48.40
Wav2Vec2-Large-XLSR-53-楚瓦什语
基于facebook/wav2vec2-large-xlsr-53在楚瓦什语上的微调,使用了Common Voice数据集。
使用该模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型)如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "cv", split="test")
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
\\t语音数组, 采样率 = torchaudio.load(batch["路径"])
\\tbatch["语音"] = resampler(语音数组).squeeze().numpy()
\\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["语音"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测:", processor.batch_decode(predicted_ids))
print("参考:", test_dataset["句子"][:2])
结果:
预测: ['проектпа килӗшӳллӗн тӗлӗ мероприяти иртермелле', 'твăра çак планета минтӗ пуяни калленнана']
参考: ['Проектпа килӗшӳллӗн, тӗрлӗ мероприяти ирттермелле.', 'Çак планета питĕ пуян иккен.']
评估
该模型可在Common Voice的楚瓦什语测试数据上如下评估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
!mkdir cer
!wget -O cer/cer.py https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese/raw/main/cer.py
test_dataset = load_dataset("common_voice", "cv", split="test")
wer = load_metric("wer")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
\\tbatch["句子"] = re.sub(chars_to_ignore_regex, '', batch["句子"]).lower()
\\t语音数组, 采样率 = torchaudio.load(batch["路径"])
\\tbatch["语音"] = resampler(语音数组).squeeze().numpy()
\\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
\\tinputs = processor(batch["语音"], sampling_rate=16_000, return_tensors="pt", padding=True)
\\twith torch.no_grad():
\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
\\tpred_ids = torch.argmax(logits, dim=-1)
\\tbatch["预测字符串"] = processor.batch_decode(pred_ids)
\\treturn batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["预测字符串"], references=result["句子"])))
print("CER: {:2f}".format(100 * cer.compute(predictions=result["预测字符串"], references=result["句子"])))
测试结果: 48.40 %
训练
训练脚本可在此处找到。