语言:
- gn
许可证: apache-2.0
标签:
- 自动语音识别
- 训练生成
- gn
- 鲁棒语音事件
- hf-asr排行榜
数据集:
- mozilla-foundation/common_voice_8_0
模型索引:
- 名称: wav2vec2-xls-r-300m-gn-cv8-4
结果:
- 任务:
名称: 自动语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice 8.0
类型: mozilla-foundation/common_voice_8_0
参数: gn
指标:
- 名称: 测试WER
类型: wer
值: 68.45
wav2vec2-xls-r-300m-gn-cv8-4
该模型是基于facebook/wav2vec2-xls-r-300m在common_voice数据集上微调的版本。
在评估集上取得了以下结果:
- 损失: 1.5805
- 词错误率(WER): 0.7545
模型描述
需要更多信息
预期用途与限制
需要更多信息
训练与评估数据
需要更多信息
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率: 0.0001
- 训练批次大小: 8
- 评估批次大小: 8
- 随机种子: 42
- 梯度累积步数: 2
- 总训练批次大小: 16
- 优化器: Adam,参数为betas=(0.9,0.999)和epsilon=1e-08
- 学习率调度器类型: 线性
- 学习率预热步数: 100
- 训练总步数: 13000
- 混合精度训练: 原生AMP
训练结果
训练损失 |
周期 |
步数 |
验证损失 |
词错误率(WER) |
9.2216 |
16.65 |
300 |
3.2771 |
1.0 |
3.1804 |
33.32 |
600 |
2.2869 |
1.0 |
1.5856 |
49.97 |
900 |
0.9573 |
0.8772 |
1.0299 |
66.65 |
1200 |
0.9044 |
0.8082 |
0.8916 |
83.32 |
1500 |
0.9478 |
0.8056 |
0.8451 |
99.97 |
1800 |
0.8814 |
0.8107 |
0.7649 |
116.65 |
2100 |
0.9897 |
0.7826 |
0.7185 |
133.32 |
2400 |
0.9988 |
0.7621 |
0.6595 |
149.97 |
2700 |
1.0607 |
0.7749 |
0.6211 |
166.65 |
3000 |
1.1826 |
0.7877 |
0.59 |
183.32 |
3300 |
1.1060 |
0.7826 |
0.5383 |
199.97 |
3600 |
1.1826 |
0.7852 |
0.5205 |
216.65 |
3900 |
1.2148 |
0.8261 |
0.4786 |
233.32 |
4200 |
1.2710 |
0.7928 |
0.4482 |
249.97 |
4500 |
1.1943 |
0.7980 |
0.4149 |
266.65 |
4800 |
1.2449 |
0.8031 |
0.3904 |
283.32 |
5100 |
1.3100 |
0.7928 |
0.3619 |
299.97 |
5400 |
1.3125 |
0.7596 |
0.3496 |
316.65 |
5700 |
1.3699 |
0.7877 |
0.3277 |
333.32 |
6000 |
1.4344 |
0.8031 |
0.2958 |
349.97 |
6300 |
1.4093 |
0.7980 |
0.2883 |
366.65 |
6600 |
1.3296 |
0.7570 |
0.2598 |
383.32 |
6900 |
1.4026 |
0.7980 |
0.2564 |
399.97 |
7200 |
1.4847 |
0.8031 |
0.2408 |
416.65 |
7500 |
1.4896 |
0.8107 |
0.2266 |
433.32 |
7800 |
1.4232 |
0.7698 |
0.224 |
449.97 |
8100 |
1.5560 |
0.7903 |
0.2038 |
466.65 |
8400 |
1.5355 |
0.7724 |
0.1948 |
483.32 |
8700 |
1.4624 |
0.7621 |
0.1995 |
499.97 |
9000 |
1.5808 |
0.7724 |
0.1864 |
516.65 |
9300 |
1.5653 |
0.7698 |
0.18 |
533.32 |
9600 |
1.4868 |
0.7494 |
0.1689 |
549.97 |
9900 |
1.5379 |
0.7749 |
0.1624 |
566.65 |
10200 |
1.5936 |
0.7749 |
0.1537 |
583.32 |
10500 |
1.6436 |
0.7801 |
0.1455 |
599.97 |
10800 |
1.6401 |
0.7673 |
0.1437 |
616.65 |
11100 |
1.6069 |
0.7673 |
0.1452 |
633.32 |
11400 |
1.6041 |
0.7519 |
0.139 |
649.97 |
11700 |
1.5758 |
0.7545 |
0.1299 |
666.65 |
12000 |
1.5559 |
0.7545 |
0.127 |
683.32 |
12300 |
1.5776 |
0.7596 |
0.1264 |
699.97 |
12600 |
1.5790 |
0.7519 |
0.1209 |
716.65 |
12900 |
1.5805 |
0.7545 |
框架版本
- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0