Span Marker Bert Base Fewnerd Fine Super
模型简介
该模型专门用于英语命名实体识别任务,能够识别多种类型的实体,包括人物、地点、组织等。
模型特点
SpanMarker架构
采用SpanMarker架构,专门优化用于命名实体识别任务
强大的编码器
使用bert-base-cased作为基础编码器,增强特征提取能力
广泛的实体类型支持
支持识别超过80种不同类型的命名实体
良好的泛化能力
在FewNERD数据集上训练,具有较好的泛化性能
模型能力
识别文本中的命名实体
支持多种实体类型分类
处理长文本序列
使用案例
信息提取
新闻文章实体识别
从新闻文章中提取人物、地点、组织等实体信息
可准确识别多种类型的命名实体
学术文献分析
从学术论文中提取专业术语和命名实体
支持识别专业领域的实体类型
知识图谱构建
知识图谱实体抽取
从非结构化文本中抽取实体用于构建知识图谱
提供高质量的实体识别结果
🚀 在FewNERD数据集上使用bert-base-cased的SpanMarker模型
本模型是一个基于SpanMarker的模型,在FewNERD数据集上进行训练,可用于命名实体识别。此SpanMarker模型使用bert-base-cased作为基础编码器。
🚀 快速开始
from span_marker import SpanMarkerModel
# 从🤗 Hub下载模型
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd-fine-super")
# 进行推理
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
✨ 主要特性
- 基于SpanMarker架构,可用于命名实体识别任务。
- 使用bert-base-cased作为编码器,增强特征提取能力。
- 在FewNERD数据集上训练,具有较好的泛化能力。
📦 安装指南
文档未提及安装步骤,故跳过此章节。
💻 使用示例
基础用法
from span_marker import SpanMarkerModel
# 从🤗 Hub下载模型
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd-fine-super")
# 进行推理
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
高级用法
from span_marker import SpanMarkerModel, Trainer
from datasets import load_dataset
# 从🤗 Hub下载模型
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd-fine-super")
# 指定包含"tokens"和"ner_tag"列的数据集
dataset = load_dataset("conll2003") # 例如CoNLL2003
# 使用预训练模型和数据集初始化训练器
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-fewnerd-fine-super-finetuned")
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | SpanMarker |
编码器 | bert-base-cased |
最大序列长度 | 256个标记 |
最大实体长度 | 8个单词 |
训练数据集 | FewNERD |
语言 | 英语 |
许可证 | cc-by-sa-4.0 |
模型来源
模型标签
标签 | 示例 |
---|---|
art-broadcastprogram | "Street Cents", "Corazones", "The Gale Storm Show : Oh , Susanna" |
art-film | "Bosch", "L'Atlantide", "Shawshank Redemption" |
art-music | "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover", "Hollywood Studio Symphony" |
art-other | "Aphrodite of Milos", "Venus de Milo", "The Today Show" |
art-painting | "Production/Reproduction", "Touit", "Cofiwch Dryweryn" |
art-writtenart | "Imelda de ' Lambertazzi", "Time", "The Seven Year Itch" |
building-airport | "Luton Airport", "Newark Liberty International Airport", "Sheremetyevo International Airport" |
building-hospital | "Hokkaido University Hospital", "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center" |
building-hotel | "The Standard Hotel", "Radisson Blu Sea Plaza Hotel", "Flamingo Hotel" |
building-library | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek" |
building-other | "Communiplex", "Alpha Recording Studios", "Henry Ford Museum" |
building-restaurant | "Fatburger", "Carnegie Deli", "Trumbull" |
building-sportsfacility | "Glenn Warner Soccer Facility", "Boston Garden", "Sports Center" |
building-theater | "Pittsburgh Civic Light Opera", "Sanders Theatre", "National Paris Opera" |
event-attack/battle/war/militaryconflict | "Easter Offensive", "Vietnam War", "Jurist" |
event-disaster | "the 1912 North Mount Lyell Disaster", "1693 Sicily earthquake", "1990s North Korean famine" |
event-election | "March 1898 elections", "1982 Mitcham and Morden by-election", "Elections to the European Parliament" |
event-other | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement" |
event-protest | "French Revolution", "Russian Revolution", "Iranian Constitutional Revolution" |
event-sportsevent | "National Champions", "World Cup", "Stanley Cup" |
location-GPE | "Mediterranean Basin", "the Republic of Croatia", "Croatian" |
location-bodiesofwater | "Atatürk Dam Lake", "Norfolk coast", "Arthur Kill" |
location-island | "Laccadives", "Staten Island", "new Samsat district" |
location-mountain | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge" |
location-other | "Northern City Line", "Victoria line", "Cartuther" |
location-park | "Gramercy Park", "Painted Desert Community Complex Historic District", "Shenandoah National Park" |
location-road/railway/highway/transit | "Friern Barnet Road", "Newark-Elizabeth Rail Link", "NJT" |
organization-company | "Dixy Chicken", "Texas Chicken", "Church 's Chicken" |
organization-education | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College" |
organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court" |
organization-media/newspaper | "TimeOut Melbourne", "Clash", "Al Jazeera" |
organization-other | "Defence Sector C", "IAEA", "4th Army" |
organization-politicalparty | "Shimpotō", "Al Wafa ' Islamic", "Kenseitō" |
organization-religion | "Jewish", "Christian", "UPCUSA" |
organization-showorganization | "Lizzy", "Bochumer Symphoniker", "Mr. Mister" |
organization-sportsleague | "China League One", "First Division", "NHL" |
organization-sportsteam | "Tottenham", "Arsenal", "Luc Alphand Aventures" |
other-astronomything | "Zodiac", "Algol", "`` Caput Larvae ''" |
other-award | "GCON", "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger" |
other-biologything | "N-terminal lipid", "BAR", "Amphiphysin" |
other-chemicalthing | "uranium", "carbon dioxide", "sulfur" |
other-currency | "$", "Travancore Rupee", "lac crore" |
other-disease | "French Dysentery Epidemic of 1779", "hypothyroidism", "bladder cancer" |
other-educationaldegree | "Master", "Bachelor", "BSc ( Hons ) in physics" |
other-god | "El", "Fujin", "Raijin" |
other-language | "Breton-speaking", "English", "Latin" |
other-law | "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act" |
other-livingthing | "insects", "monkeys", "patchouli" |
other-medical | "Pediatrics", "amitriptyline", "pediatrician" |
person-actor | "Ellaline Terriss", "Tchéky Karyo", "Edmund Payne" |
person-artist/author | "George Axelrod", "Gaetano Donizett", "Hicks" |
person-athlete | "Jaguar", "Neville", "Tozawa" |
person-director | "Bob Swaim", "Richard Quine", "Frank Darabont" |
person-other | "Richard Benson", "Holden", "Campbell" |
person-politician | "William", "Rivière", "Emeric" |
person-scholar | "Stedman", "Wurdack", "Stalmine" |
person-soldier | "Helmuth Weidling", "Krukenberg", "Joachim Ziegler" |
product-airplane | "Luton", "Spey-equipped FGR.2s", "EC135T2 CPDS" |
product-car | "100EX", "Corvettes - GT1 C6R", "Phantom" |
product-food | "red grape", "yakiniku", "V. labrusca" |
product-game | "Airforce Delta", "Hardcore RPG", "Splinter Cell" |
product-other | "Fairbottom Bobs", "X11", "PDP-1" |
product-ship | "Congress", "Essex", "HMS `` Chinkara ''" |
product-software | "AmiPDF", "Apdf", "Wikipedia" |
product-train | "High Speed Trains", "55022", "Royal Scots Grey" |
product-weapon | "AR-15 's", "ZU-23-2M Wróbel", "ZU-23-2MR Wróbel II" |
训练详情
训练集指标
训练集 | 最小值 | 中位数 | 最大值 |
---|---|---|---|
句子长度 | 1 | 24.4945 | 267 |
每个句子的实体数 | 0 | 2.5832 | 88 |
训练超参数
- 学习率:5e-05
- 训练批次大小:32
- 评估批次大小:32
- 随机种子:42
- 优化器:Adam,β=(0.9, 0.999),ε=1e-08
- 学习率调度器类型:线性
- 学习率调度器热身比例:0.1
- 训练轮数:3
训练硬件
- 云端训练:否
- GPU型号:1 x NVIDIA GeForce RTX 3090
- CPU型号:13th Gen Intel(R) Core(TM) i7-13700K
- 内存大小:31.78 GB
框架版本
- Python:3.9.16
- SpanMarker:1.3.1.dev
- Transformers:4.29.2
- PyTorch:2.0.1+cu118
- Datasets:2.14.3
- Tokenizers:0.13.2
🔧 技术细节
文档未提供相关技术细节,故跳过此章节。
📄 许可证
本模型使用的许可证为cc-by-sa-4.0。
Indonesian Roberta Base Posp Tagger
MIT
这是一个基于印尼语RoBERTa模型微调的词性标注模型,在indonlu数据集上训练,用于印尼语文本的词性标注任务。
序列标注
Transformers 其他

I
w11wo
2.2M
7
Bert Base NER
MIT
基于BERT微调的命名实体识别模型,可识别四类实体:地点(LOC)、组织机构(ORG)、人名(PER)和杂项(MISC)
序列标注 英语
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
该模型是基于RoBERTa微调的序列标注模型,用于识别和移除医疗记录中的受保护健康信息(PHI/PII)。
序列标注
Transformers 支持多种语言

D
obi
1.1M
33
Ner English Fast
Flair自带的英文快速4类命名实体识别模型,基于Flair嵌入和LSTM-CRF架构,在CoNLL-03数据集上达到92.92的F1分数。
序列标注
PyTorch 英语
N
flair
978.01k
24
French Camembert Postag Model
基于Camembert-base的法语词性标注模型,使用free-french-treebank数据集训练
序列标注
Transformers 法语

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
基于XLM-Roberta-large架构微调的西班牙语命名实体识别模型,在CoNLL-2002数据集上表现优异。
序列标注
Transformers 西班牙语

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
基于NusaBert-v1.3在印尼语NER任务上微调的命名实体识别模型
序列标注
Transformers 其他

N
cahya
759.09k
3
Ner English Large
Flair框架内置的英文4类大型NER模型,基于文档级XLM-R嵌入和FLERT技术,在CoNLL-03数据集上F1分数达94.36。
序列标注
PyTorch 英语
N
flair
749.04k
44
Punctuate All
MIT
基于xlm-roberta-base微调的多语言标点符号预测模型,支持12种欧洲语言的标点符号自动补全
序列标注
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
基于xlm-roberta-base微调的日语命名实体识别模型
序列标注
Transformers 支持多种语言

X
tsmatz
630.71k
25
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文