语言: eu
数据集:
- common_voice
评估指标:
- wer
标签:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
许可证: apache-2.0
模型索引:
- 名称: XLSR Wav2Vec2 Large 53 Basque by pcuenq
结果:
- 任务:
名称: 语音识别
类型: automatic-speech-recognition
数据集:
名称: Common Voice eu
类型: common_voice
参数: eu
评估指标:
- 名称: 测试WER
类型: wer
值: 15.34
Wav2Vec2-Large-XLSR-53-EU
基于facebook/wav2vec2-large-xlsr-53模型,使用Common Voice数据集对巴斯克语进行微调。
使用此模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),如下所示:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "eu", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")
model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估
该模型可按以下方式在Common Voice的巴斯克语测试数据上进行评估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "eu", split="test")
wer = load_metric("wer")
model_name = "pcuenq/wav2vec2-large-xlsr-53-eu"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
model.to("cuda")
chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]'
chars_to_ignore_pattern = re.compile(chars_to_ignore_regex)
def remove_special_characters(batch):
batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " "
return batch
import librosa
def speech_file_to_array_fn(batch):
speech_array, sample_rate = torchaudio.load(batch["path"])
batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000)
return batch
def cv_prepare(batch):
batch = remove_special_characters(batch)
batch = speech_file_to_array_fn(batch)
return batch
num_proc = 16
test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 15.34%
训练
训练使用了Common Voice的train
和validation
数据集。训练共进行了22 + 20个周期,参数如下:
- 批量大小16,梯度累积步数2
- 学习率: 2.5e-4
- 激活丢弃率: 0.05
- 注意力丢弃率: 0.1
- 隐藏层丢弃率: 0.05
- 特征投影丢弃率: 0.05
- 掩码时间概率: 0.08
- 层丢弃率: 0.05