language: "en"
tags:
- twitter
- 立场检测
- 2020美国大选
- 政治
license: "gpl-3.0"
针对乔·拜登立场检测的2020年美国大选推特预训练BERT模型(KE-MLM)
本模型为《立场检测的知识增强掩码语言模型》(NAACL 2021)中KE-MLM模型的预训练权重。
训练数据
该模型基于超过500万条关于2020年美国总统大选的英文推文进行预训练,随后使用我们标注立场的数据集针对乔·拜登的立场检测任务进行微调。
训练目标
该模型以BERT-base为基础,通过标准掩码语言模型目标进行训练,并针对乔·拜登的立场检测任务微调分类层。
使用说明
本预训练语言模型专为针对乔·拜登的立场检测任务微调。
更多细节请参阅官方代码库。
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-biden-KE-MLM"
tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path)
model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path)
id2label = {
0: "反对",
1: "支持",
2: "中立"
}
sentence = "Hello World."
inputs = tokenizer(sentence.lower(), return_tensors="pt")
outputs = model(**inputs)
predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()
print("文本:", sentence)
print("预测结果:", id2label[np.argmax(predicted_probability)])
print("反对概率:", predicted_probability[0])
print("支持概率:", predicted_probability[1])
print("中立概率:", predicted_probability[2])
sentence = "Go Go Biden!!!"
inputs = tokenizer(sentence.lower(), return_tensors="pt")
outputs = model(**inputs)
predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()
print("文本:", sentence)
print("预测结果:", id2label[np.argmax(predicted_probability)])
print("反对概率:", predicted_probability[0])
print("支持概率:", predicted_probability[1])
print("中立概率:", predicted_probability[2])
sentence = "Biden is the worst."
inputs = tokenizer(sentence.lower(), return_tensors="pt")
outputs = model(**inputs)
predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()
print("文本:", sentence)
print("预测结果:", id2label[np.argmax(predicted_probability)])
print("反对概率:", predicted_probability[0])
print("支持概率:", predicted_probability[1])
print("中立概率:", predicted_probability[2])
参考文献
引用
@inproceedings{kawintiranon2021knowledge,
title={Knowledge Enhanced Masked Language Model for Stance Detection},
author={Kawintiranon, Kornraphop and Singh, Lisa},
booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
year={2021},
publisher={Association for Computational Linguistics},
url={https://www.aclweb.org/anthology/2021.naacl-main.376}
}