许可证:apache-2.0
语言:
这是Orpheus-3b FT的4位AWQ量化版本。推荐使用lmdeploy,因其安装简单且速度极快。
以下是加载模型、处理音频文件进行语音克隆以及生成语音的代码。
加载模型的代码:
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from transformers import AutoTokenizer
from snac import SNAC
tp = 1
cache_max_entry_count = 0.2
engine_config = TurbomindEngineConfig(model_format='awq', dtype='float16', cache_max_entry_count=cache_max_entry_count, tp=tp, quant_policy=8)
pipe = pipeline("YaTharThShaRma999/orpheus_awq", backend_config=engine_config)
tokeniser = AutoTokenizer.from_pretrained("unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to('cuda:0')
将语音文件转换为snac令牌以进行语音克隆的代码:
import librosa
import torch
from IPython.display import Audio
import gc
import torch
from pydub import AudioSegment
tokenizer = tokeniser
my_wav_file_is = "test.mp3"
and_the_transcript_is = ""
filename = my_wav_file_is
audio_array, sample_rate = librosa.load(filename)
def tokenise_audio(waveform):
waveform = torch.from_numpy(waveform).unsqueeze(0)
waveform = waveform.to(dtype=torch.float32)
waveform = waveform.unsqueeze(0).to('cuda:0')
with torch.inference_mode():
codes = snac_model.encode(waveform)
all_codes = []
for i in range(codes[0].shape[1]):
all_codes.append(codes[0][0][i].item()+128266)
all_codes.append(codes[1][0][2*i].item()+128266+4096)
all_codes.append(codes[2][0][4*i].item()+128266+(2*4096))
all_codes.append(codes[2][0][(4*i)+1].item()+128266+(3*4096))
all_codes.append(codes[1][0][(2*i)+1].item()+128266+(4*4096))
all_codes.append(codes[2][0][(4*i)+2].item()+128266+(5*4096))
all_codes.append(codes[2][0][(4*i)+3].item()+128266+(6*4096))
return all_codes
myts = tokenise_audio(audio_array)
gc.collect()
torch.cuda.empty_cache()
最后,生成语音并通过IPython播放:
from lmdeploy import GenerationConfig
import gc
import torch
gen_config = GenerationConfig(top_p=0.7,
top_k=50,
temperature=0.2,
max_new_tokens=1024,
min_new_tokens=30,
stop_token_ids=[128009, 128001, 49158, 128258],
repetition_penalty=2.0,
skip_special_tokens=False,
do_sample=True,
min_p=0.6)
prompt = and_the_transcript_is + "<laugh> 呃,嘿,最近怎么样??"
voice_name = "zac"
response2 = pipe([f"<custom_token_3><|begin_of_text|>{voice_name}: {prompt}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>" + tokeniser.decode(myts)], gen_config=gen_config)
gc.collect()
torch.cuda.empty_cache()
generated_ids = tokeniser.encode(response2[0].text, return_tensors='pt', add_special_tokens=False)
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
mask = cropped_tensor != token_to_remove
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
def redistribute_codes(code_list):
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [torch.tensor(layer_1).unsqueeze(0).to('cuda:0'),
torch.tensor(layer_2).unsqueeze(0).to('cuda:0'),
torch.tensor(layer_3).unsqueeze(0).to('cuda:0')]
audio_hat = snac_model.decode(codes)
return audio_hat
my_samples = []
for code_list in code_lists:
samples = redistribute_codes(code_list)
my_samples.append(samples)
from IPython.display import display, Audio
display(Audio(samples.detach().squeeze().to("cpu").numpy(), rate=24000))
del my_samples,samples, code_lists, mask, cropped_tensor, processed_rows
gc.collect()
torch.cuda.empty_cache()