库名称: segmentation-models-pytorch
许可证: mit
管道标签: 图像分割
标签:
- 模型中心混合
- pytorch模型中心混合
- 分割模型-pytorch
- 语义分割
- pytorch
- dpt
语言:
- python
DPT模型卡片
目录:
加载训练好的模型

- 安装依赖项。
pip install -U segmentation_models_pytorch albumentations
- 运行推理。
import torch
import requests
import numpy as np
import albumentations as A
import segmentation_models_pytorch as smp
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = "smp-hub/dpt-large-ade20k"
model = smp.from_pretrained(checkpoint).eval().to(device)
preprocessing = A.Compose.from_pretrained(checkpoint)
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw)
np_image = np.array(image)
normalized_image = preprocessing(image=np_image)["image"]
input_tensor = torch.as_tensor(normalized_image)
input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0)
input_tensor = input_tensor.to(device)
with torch.no_grad():
output_mask = model(input_tensor)
mask = torch.nn.functional.interpolate(
output_mask, size=(image.height, image.width), mode="bilinear", align_corners=False
)
mask = mask.argmax(1).cpu().numpy()
模型初始化参数
model_init_params = {
"encoder_name": "tu-vit_large_patch16_384",
"encoder_depth": 4,
"encoder_weights": None,
"encoder_output_indices": None,
"decoder_intermediate_channels": (256, 512, 1024, 1024),
"decoder_fusion_channels": 256,
"dynamic_img_size": True,
"in_channels": 3,
"classes": 150,
"activation": None,
"aux_params": None
}
数据集
数据集名称: ADE20K
更多信息
- 库: https://github.com/qubvel/segmentation_models.pytorch
- 文档: https://smp.readthedocs.io/en/latest/
此模型已使用PytorchModelHubMixin推送到Hub。