license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlmr-lstm-crf-resume-ner2
results: []
xlmr-lstm-crf-resume-ner2
该模型是基于xlm-roberta-base在特定数据集上微调的版本,其评估集表现如下:
- 损失值: 0.3688
- 精确率: 0.7289
- 召回率: 0.7578
- F1分数: 0.7431
- 准确率: 0.9403
模型说明
需补充更多信息
使用场景与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用的超参数如下:
- 学习率: 8e-05
- 训练批次大小: 64
- 评估批次大小: 64
- 随机种子: 42
- 优化器: Adam (beta1=0.9, beta2=0.999, epsilon=1e-08)
- 学习率调度器类型: 线性
- 训练轮次: 100
- 混合精度训练: 原生AMP
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
精确率 |
召回率 |
F1分数 |
准确率 |
2.6224 |
1.0 |
17 |
1.1537 |
0.9517 |
0.0367 |
0.0707 |
0.8445 |
1.0702 |
2.0 |
34 |
0.9869 |
0.0 |
0.0 |
0.0 |
0.8483 |
0.8288 |
3.0 |
51 |
0.6899 |
0.0287 |
0.0029 |
0.0053 |
0.8586 |
0.6586 |
4.0 |
68 |
0.5719 |
0.1512 |
0.0378 |
0.0605 |
0.8705 |
0.5433 |
5.0 |
85 |
0.4887 |
0.2649 |
0.0873 |
0.1313 |
0.8745 |
0.4696 |
6.0 |
102 |
0.4358 |
0.1852 |
0.0631 |
0.0941 |
0.8822 |
0.4114 |
7.0 |
119 |
0.3901 |
0.4455 |
0.3463 |
0.3897 |
0.8914 |
0.3631 |
8.0 |
136 |
0.3684 |
0.4111 |
0.3891 |
0.3998 |
0.9006 |
0.3239 |
9.0 |
153 |
0.3457 |
0.4668 |
0.4991 |
0.4824 |
0.9024 |
0.3047 |
10.0 |
170 |
0.3195 |
0.5824 |
0.4693 |
0.5198 |
0.9142 |
0.2775 |
11.0 |
187 |
0.3110 |
0.5384 |
0.5206 |
0.5294 |
0.9130 |
0.2518 |
12.0 |
204 |
0.3078 |
0.6492 |
0.4703 |
0.5455 |
0.9176 |
0.2362 |
13.0 |
221 |
0.3036 |
0.5136 |
0.5739 |
0.5420 |
0.9130 |
0.2174 |
14.0 |
238 |
0.2983 |
0.5499 |
0.6023 |
0.5749 |
0.9146 |
0.2037 |
15.0 |
255 |
0.2909 |
0.6167 |
0.5656 |
0.5900 |
0.9234 |
0.1842 |
16.0 |
272 |
0.3100 |
0.5866 |
0.6141 |
0.6000 |
0.9201 |
0.1706 |
17.0 |
289 |
0.2949 |
0.6067 |
0.6234 |
0.6149 |
0.9231 |
0.1648 |
18.0 |
306 |
0.2992 |
0.6047 |
0.6188 |
0.6117 |
0.9239 |
0.1485 |
19.0 |
323 |
0.2972 |
0.6012 |
0.6761 |
0.6364 |
0.9228 |
0.1381 |
20.0 |
340 |
0.2910 |
0.6372 |
0.6423 |
0.6397 |
0.9282 |
0.1259 |
21.0 |
357 |
0.2822 |
0.6575 |
0.6534 |
0.6555 |
0.9310 |
0.1178 |
22.0 |
374 |
0.3007 |
0.6297 |
0.6862 |
0.6567 |
0.9278 |
0.1123 |
23.0 |
391 |
0.2864 |
0.6537 |
0.6859 |
0.6694 |
0.9308 |
0.1017 |
24.0 |
408 |
0.2988 |
0.6924 |
0.6849 |
0.6886 |
0.9360 |
0.0961 |
25.0 |
425 |
0.3043 |
0.6219 |
0.7080 |
0.6622 |
0.9299 |
0.091 |
26.0 |
442 |
0.3092 |
0.6389 |
0.7298 |
0.6813 |
0.9293 |
0.0866 |
27.0 |
459 |
0.3121 |
0.6346 |
0.6806 |
0.6568 |
0.9278 |
0.0808 |
28.0 |
476 |
0.2988 |
0.7084 |
0.7040 |
0.7062 |
0.9376 |
0.0723 |
29.0 |
493 |
0.2962 |
0.6888 |
0.7112 |
0.6998 |
0.9372 |
0.0692 |
30.0 |
510 |
0.3080 |
0.6906 |
0.7248 |
0.7073 |
0.9365 |
0.0627 |
31.0 |
527 |
0.3178 |
0.6683 |
0.7077 |
0.6874 |
0.9342 |
0.0647 |
32.0 |
544 |
0.3044 |
0.7079 |
0.7211 |
0.7144 |
0.9380 |
0.0557 |
33.0 |
561 |
0.3157 |
0.7206 |
0.7200 |
0.7203 |
0.9382 |
0.0532 |
34.0 |
578 |
0.3220 |
0.6841 |
0.7501 |
0.7156 |
0.9371 |
0.0496 |
35.0 |
595 |
0.3206 |
0.6452 |
0.7565 |
0.6964 |
0.9314 |
0.0494 |
36.0 |
612 |
0.3203 |
0.6901 |
0.7533 |
0.7203 |
0.9376 |
0.0426 |
37.0 |
629 |
0.3348 |
0.7123 |
0.7408 |
0.7263 |
0.9374 |
0.0416 |
38.0 |
646 |
0.3317 |
0.7065 |
0.7389 |
0.7224 |
0.9376 |
0.0418 |
39.0 |
663 |
0.3323 |
0.7099 |
0.7378 |
0.7236 |
0.9379 |
0.0372 |
40.0 |
680 |
0.3322 |
0.7087 |
0.7543 |
0.7308 |
0.9383 |
0.0349 |
41.0 |
697 |
0.3295 |
0.7213 |
0.7261 |
0.7237 |
0.9381 |
0.0357 |
42.0 |
714 |
0.3474 |
0.7 |
0.7471 |
0.7228 |
0.9368 |
0.034 |
43.0 |
731 |
0.3342 |
0.7158 |
0.7554 |
0.7350 |
0.9384 |
0.0301 |
44.0 |
748 |
0.3417 |
0.7271 |
0.7423 |
0.7346 |
0.9397 |
0.0297 |
45.0 |
765 |
0.3416 |
0.7284 |
0.7501 |
0.7391 |
0.9397 |
0.0278 |
46.0 |
782 |
0.3583 |
0.7254 |
0.7567 |
0.7408 |
0.9403 |
0.0264 |
47.0 |
799 |
0.3515 |
0.7246 |
0.7583 |
0.7411 |
0.9405 |
0.0254 |
48.0 |
816 |
0.3544 |
0.7147 |
0.7628 |
0.7380 |
0.9405 |
0.0239 |
49.0 |
833 |
0.3555 |
0.7161 |
0.7706 |
0.7423 |
0.9392 |
0.0227 |
50.0 |
850 |
0.3611 |
0.7164 |
0.7687 |
0.7417 |
0.9400 |
0.023 |
51.0 |
867 |
0.3646 |
0.7080 |
0.7687 |
0.7371 |
0.9389 |
0.0217 |
52.0 |
884 |
0.3718 |
0.7344 |
0.7639 |
0.7489 |
0.9404 |
0.0214 |
53.0 |
901 |
0.3656 |
0.7137 |
0.7618 |
0.7370 |
0.9397 |
0.0197 |
54.0 |
918 |
0.3700 |
0.7060 |
0.7612 |
0.7326 |
0.9387 |
0.019 |
55.0 |
935 |
0.3764 |
0.7166 |
0.7762 |
0.7452 |
0.9401 |
0.0183 |
56.0 |
952 |
0.3688 |
0.7289 |
0.7578 |
0.7431 |
0.9403 |
框架版本
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0