许可协议: 其他
标签:
- 视觉
数据集:
- imagenet_1k
微件示例:
- 图片链接: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
示例标题: 房屋
- 图片链接: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
示例标题: 城堡
SegFormer (b0尺寸) 仅预训练编码器
该SegFormer编码器基于Imagenet-1k微调,出自谢等人在论文《SegFormer: 基于Transformer的语义分割简洁高效设计》(https://arxiv.org/abs/2105.15203),并首发于此代码库。
免责声明:发布SegFormer的团队未为此模型编写说明卡,本说明卡由Hugging Face团队撰写。
模型描述
SegFormer采用分层Transformer编码器与轻量级全MLP解码头架构,在ADE20K和Cityscapes等语义分割基准测试中表现优异。分层Transformer首先在ImageNet-1k上预训练,随后添加解码头并在下游数据集上联合微调。
本仓库仅包含预训练的分层Transformer,可用于下游任务微调。
预期用途与限制
可用于语义分割任务的微调。访问模型中心查找您感兴趣任务的微调版本。
使用方法
以下示例展示如何使用该模型对COCO 2017数据集的图像进行ImageNet千分类:
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("预测类别:", model.config.id2label[predicted_class_idx])
更多代码示例详见文档。
许可协议
模型许可详见此处。
BibTeX引用信息
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}