许可证: cc-by-nc-4.0
标签:
- 训练生成
指标:
- 准确率
模型索引:
- 名称: videomae-base-ipm_all_videos
结果: []
videomae-base-ipm_all_videos
该模型是基于MCG-NJU/videomae-base在未知数据集上微调的版本。在评估集上达到以下结果:
模型描述
需补充更多信息
预期用途与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用的超参数如下:
- 学习率: 5e-05
- 训练批次大小: 4
- 评估批次大小: 4
- 随机种子: 42
- 优化器: Adam(β1=0.9,β2=0.999,epsilon=1e-08)
- 学习率调度器类型: 线性
- 学习率预热比例: 0.1
- 训练步数: 3600
训练结果
训练损失 |
周期 |
步数 |
验证损失 |
准确率 |
1.7831 |
0.02 |
60 |
1.8965 |
0.1186 |
1.7706 |
1.02 |
120 |
1.9115 |
0.1186 |
1.7497 |
2.02 |
180 |
1.8985 |
0.1356 |
1.5214 |
3.02 |
240 |
1.4807 |
0.3475 |
1.1458 |
4.02 |
300 |
1.7024 |
0.3559 |
1.1587 |
5.02 |
360 |
1.6771 |
0.2966 |
0.9256 |
6.02 |
420 |
1.6428 |
0.3814 |
1.265 |
7.02 |
480 |
1.5169 |
0.5 |
0.8271 |
8.02 |
540 |
1.0310 |
0.5847 |
0.6011 |
9.02 |
600 |
1.1739 |
0.5508 |
0.9542 |
10.02 |
660 |
1.3323 |
0.5424 |
1.1231 |
11.02 |
720 |
1.4279 |
0.4915 |
0.728 |
12.02 |
780 |
2.1913 |
0.4661 |
0.5991 |
13.02 |
840 |
1.1088 |
0.6271 |
1.0613 |
14.02 |
900 |
1.3781 |
0.5 |
0.9121 |
15.02 |
960 |
1.4224 |
0.5424 |
0.6083 |
16.02 |
1020 |
0.8779 |
0.6695 |
0.408 |
17.02 |
1080 |
0.8512 |
0.7119 |
0.3741 |
18.02 |
1140 |
0.8884 |
0.7034 |
0.8906 |
19.02 |
1200 |
1.1396 |
0.6017 |
0.568 |
20.02 |
1260 |
0.7380 |
0.6949 |
0.4135 |
21.02 |
1320 |
0.7966 |
0.6525 |
0.5492 |
22.02 |
1380 |
0.9815 |
0.6780 |
0.902 |
23.02 |
1440 |
0.9267 |
0.6441 |
0.6889 |
24.02 |
1500 |
1.4313 |
0.5763 |
0.788 |
25.02 |
1560 |
1.2156 |
0.5678 |
0.7324 |
26.02 |
1620 |
0.8015 |
0.6780 |
0.6733 |
27.02 |
1680 |
0.8682 |
0.6949 |
0.498 |
28.02 |
1740 |
0.8767 |
0.6949 |
0.5558 |
29.02 |
1800 |
0.9248 |
0.6780 |
0.5583 |
30.02 |
1860 |
1.1784 |
0.6356 |
0.3905 |
31.02 |
1920 |
1.0646 |
0.6864 |
0.3728 |
32.02 |
1980 |
0.8338 |
0.7797 |
0.5988 |
33.02 |
2040 |
0.8339 |
0.7542 |
0.3636 |
34.02 |
2100 |
0.7577 |
0.7627 |
0.505 |
35.02 |
2160 |
1.0310 |
0.6864 |
0.5344 |
36.02 |
2220 |
0.6345 |
0.7458 |
0.2814 |
37.02 |
2280 |
0.9954 |
0.7119 |
0.2187 |
38.02 |
2340 |
0.7515 |
0.7797 |
0.4876 |
39.02 |
2400 |
0.8392 |
0.7627 |
0.1148 |
40.02 |
2460 |
0.6182 |
0.8729 |
0.3139 |
41.02 |
2520 |
1.1651 |
0.6949 |
0.2638 |
42.02 |
2580 |
0.8299 |
0.7797 |
0.1989 |
43.02 |
2640 |
0.5943 |
0.8220 |
0.5473 |
44.02 |
2700 |
0.6514 |
0.8644 |
0.3921 |
45.02 |
2760 |
0.6708 |
0.8220 |
0.1756 |
46.02 |
2820 |
0.5431 |
0.8305 |
0.1089 |
47.02 |
2880 |
0.6040 |
0.8136 |
0.3616 |
48.02 |
2940 |
0.5281 |
0.8475 |
0.2752 |
49.02 |
3000 |
0.6430 |
0.8305 |
0.3847 |
50.02 |
3060 |
0.5640 |
0.8644 |
0.0909 |
51.02 |
3120 |
0.5178 |
0.8559 |
0.3426 |
52.02 |
3180 |
0.3770 |
0.8983 |
0.0516 |
53.02 |
3240 |
0.5365 |
0.8390 |
0.2133 |
54.02 |
3300 |
0.5919 |
0.8475 |
0.1382 |
55.02 |
3360 |
0.5112 |
0.8390 |
0.1803 |
56.02 |
3420 |
0.5173 |
0.8475 |
0.1352 |
57.02 |
3480 |
0.5207 |
0.8390 |
0.4445 |
58.02 |
3540 |
0.4763 |
0.8559 |
0.3249 |
59.02 |
3600 |
0.4713 |
0.8559 |
框架版本
- Transformers 4.29.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3