许可证: mit
标签:
- 视觉
- 图像分割
数据集:
- ydshieh/coco_dataset_script
小部件:
- 图片: https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/coco.jpeg
示例标题: 人物
- 图片: https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/demo_2.jpg
示例标题: 飞机
- 图片: https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/demo.jpeg
示例标题: 柯基犬
OneFormer
基于COCO数据集训练的大型OneFormer模型(Swin骨干网络)。该模型由Jain等人在论文《OneFormer:统一图像分割的单一Transformer》中提出,并首次发布于此代码库。

模型描述
OneFormer是首个多任务通用图像分割框架。仅需通过单一通用架构、单一模型和单一数据集训练一次,即可在语义分割、实例分割和全景分割任务上超越现有专用模型。OneFormer利用任务令牌引导模型聚焦当前任务,使架构在训练时任务导向,在推理时任务动态,所有功能均由单一模型实现。

使用场景与限制
该检查点可用于语义分割、实例分割和全景分割。访问模型中心可查看基于其他数据集微调的版本。
使用方法
使用方式如下:
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
from PIL import Image
import requests
url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/coco.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_coco_swin_large")
semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
semantic_outputs = model(**semantic_inputs)
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt")
instance_outputs = model(**instance_inputs)
predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt")
panoptic_outputs = model(**panoptic_inputs)
predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
更多示例请参阅文档。
引用
@article{jain2022oneformer,
title={{OneFormer: 统一图像分割的单一Transformer}},
author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi},
journal={arXiv},
year={2022}
}