Segformer B0 Finetuned Segments Construction 1
模型简介
该模型是针对建筑场景优化的图像分割模型,能够识别建筑平面图中的各类结构元素
模型特点
建筑场景优化
专门针对建筑平面图元素(墙壁/门窗等)进行优化训练
轻量级架构
基于SegFormer-B0的轻量级设计,适合资源有限的环境
多元素识别
可同时识别标尺、墙壁、地板、门等多种建筑元素
模型能力
建筑平面图分割
墙壁检测
门窗定位
建筑元素识别
使用案例
建筑设计
平面图自动化标注
自动识别建筑图纸中的结构元素并生成标注
墙壁识别准确率96.44%,门识别准确率65.25%
施工进度监测
通过现场照片分析建筑元素完成情况
室内设计
空间布局分析
识别房间内的门窗位置和墙体结构
🚀 segformer-b0-finetuned-segments-construction-1
该模型是nvidia/mit-b0在yiming19/construction_place数据集上的微调版本。它在评估集上取得了以下结果,可用于图像分割任务,为建筑场景的图像分析提供了有力支持。
🚀 快速开始
此模型是在yiming19/construction_place数据集上对nvidia/mit-b0进行微调得到的。以下是该模型在评估集上的表现:
- 损失值:0.2796
- 平均交并比(Mean Iou):0.3218
- 平均准确率(Mean Accuracy):0.5305
- 总体准确率(Overall Accuracy):0.9276
- 未标记准确率(Accuracy Unlabeled):nan
- 尺子准确率(Accuracy Ruler):0.8954
- 插座准确率(Accuracy Socket):0.0
- 墙壁准确率(Accuracy Wall):0.9644
- 窗户准确率(Accuracy Window):nan
- 加热器准确率(Accuracy Heater):nan
- 地板准确率(Accuracy Floor):0.6710
- 天花板准确率(Accuracy Ceiling):0.0
- 踢脚线准确率(Accuracy Skirting):nan
- 门准确率(Accuracy Door):0.6525
- 灯准确率(Accuracy Light):nan
- 未标记交并比(Iou Unlabeled):nan
- 尺子交并比(Iou Ruler):0.7222
- 插座交并比(Iou Socket):0.0
- 墙壁交并比(Iou Wall):0.9553
- 窗户交并比(Iou Window):0.0
- 加热器交并比(Iou Heater):nan
- 地板交并比(Iou Floor):0.2630
- 天花板交并比(Iou Ceiling):0.0
- 踢脚线交并比(Iou Skirting):0.0
- 门交并比(Iou Door):0.6342
- 灯交并比(Iou Light):nan
📚 详细文档
训练过程
训练超参数
训练过程中使用了以下超参数:
属性 | 详情 |
---|---|
学习率(learning_rate) | 6e-05 |
训练批次大小(train_batch_size) | 2 |
评估批次大小(eval_batch_size) | 2 |
随机种子(seed) | 42 |
优化器(optimizer) | Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08) |
学习率调度器类型(lr_scheduler_type) | 线性 |
训练轮数(num_epochs) | 50 |
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 平均交并比 | 平均准确率 | 总体准确率 | 未标记准确率 | 尺子准确率 | 插座准确率 | 墙壁准确率 | 窗户准确率 | 加热器准确率 | 地板准确率 | 天花板准确率 | 踢脚线准确率 | 门准确率 | 灯准确率 | 未标记交并比 | 尺子交并比 | 插座交并比 | 墙壁交并比 | 窗户交并比 | 加热器交并比 | 地板交并比 | 天花板交并比 | 踢脚线交并比 | 门交并比 | 灯交并比 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8126 | 1.43 | 20 | 2.1233 | 0.1955 | 0.5160 | 0.8448 | nan | 0.8191 | 0.0 | 0.8868 | nan | nan | 0.9618 | 0.0 | nan | 0.4281 | nan | 0.0 | 0.5555 | 0.0 | 0.8845 | 0.0 | 0.0 | 0.2971 | 0.0 | 0.0 | 0.4135 | 0.0 |
1.905 | 2.86 | 40 | 1.3611 | 0.1827 | 0.4921 | 0.8505 | nan | 0.9275 | 0.0 | 0.9139 | nan | nan | 0.9627 | 0.0 | nan | 0.1484 | nan | nan | 0.5404 | 0.0 | 0.9095 | 0.0 | 0.0 | 0.2289 | 0.0 | 0.0 | 0.1484 | 0.0 |
1.1072 | 4.29 | 60 | 1.0502 | 0.2327 | 0.5517 | 0.8903 | nan | 0.9108 | 0.0 | 0.9266 | nan | nan | 0.9367 | 0.0 | nan | 0.5360 | nan | nan | 0.5301 | 0.0 | 0.9206 | 0.0 | 0.0 | 0.3475 | 0.0 | 0.0 | 0.5284 | 0.0 |
1.0076 | 5.71 | 80 | 0.8802 | 0.2744 | 0.5609 | 0.9089 | nan | 0.8208 | 0.0 | 0.9410 | nan | nan | 0.9532 | 0.0 | nan | 0.6505 | nan | nan | 0.5500 | 0.0 | 0.9277 | 0.0 | 0.0 | 0.3688 | 0.0 | 0.0 | 0.6227 | nan |
1.5533 | 7.14 | 100 | 0.8991 | 0.2846 | 0.5514 | 0.8878 | nan | 0.8918 | 0.0 | 0.9243 | nan | nan | 0.9591 | 0.0 | nan | 0.5332 | nan | nan | 0.5262 | 0.0 | 0.9169 | 0.0 | nan | 0.3209 | 0.0 | 0.0 | 0.5132 | nan |
0.9912 | 8.57 | 120 | 0.9340 | 0.2891 | 0.5652 | 0.8854 | nan | 0.9478 | 0.0 | 0.9151 | nan | nan | 0.9438 | 0.0 | nan | 0.5844 | nan | nan | 0.5059 | 0.0 | 0.9098 | 0.0 | nan | 0.3424 | 0.0 | 0.0 | 0.5544 | nan |
0.784 | 10.0 | 140 | 0.7017 | 0.3140 | 0.5984 | 0.9173 | nan | 0.9136 | 0.0 | 0.9305 | nan | nan | 0.8971 | 0.0 | nan | 0.8493 | nan | nan | 0.5324 | 0.0 | 0.9224 | 0.0 | 0.0 | 0.5805 | 0.0 | 0.0 | 0.7909 | nan |
0.5636 | 11.43 | 160 | 0.6925 | 0.3573 | 0.5978 | 0.9280 | nan | 0.8714 | 0.0 | 0.9412 | nan | nan | 0.8868 | 0.0 | nan | 0.8876 | nan | nan | 0.5701 | 0.0 | 0.9308 | 0.0 | nan | 0.5638 | 0.0 | 0.0 | 0.7935 | nan |
1.0692 | 12.86 | 180 | 0.7313 | 0.2931 | 0.5724 | 0.8981 | nan | 0.9587 | 0.0 | 0.9231 | nan | nan | 0.8880 | 0.0 | nan | 0.6647 | nan | nan | 0.4988 | 0.0 | 0.9182 | 0.0 | nan | 0.3342 | 0.0 | 0.0 | 0.5932 | nan |
0.7603 | 14.29 | 200 | 0.6907 | 0.2577 | 0.5744 | 0.9001 | nan | 0.9619 | 0.0 | 0.9251 | nan | nan | 0.8930 | 0.0 | nan | 0.6661 | nan | nan | 0.4939 | 0.0 | 0.9208 | 0.0 | 0.0 | 0.3219 | 0.0 | 0.0 | 0.5824 | nan |
0.9509 | 15.71 | 220 | 0.5110 | 0.3682 | 0.6069 | 0.9324 | nan | 0.9355 | 0.0 | 0.9417 | nan | nan | 0.8453 | 0.0 | nan | 0.9191 | nan | nan | 0.5671 | 0.0 | 0.9334 | 0.0 | nan | 0.6050 | 0.0 | 0.0 | 0.8403 | nan |
0.4254 | 17.14 | 240 | 0.5925 | 0.2961 | 0.5629 | 0.9023 | nan | 0.9646 | 0.0 | 0.9295 | nan | nan | 0.8261 | 0.0 | nan | 0.6569 | nan | nan | 0.5302 | 0.0 | 0.9243 | 0.0 | nan | 0.3138 | 0.0 | 0.0 | 0.6009 | nan |
0.3839 | 18.57 | 260 | 0.4226 | 0.3537 | 0.5479 | 0.9367 | nan | 0.9108 | 0.0 | 0.9540 | nan | nan | 0.5102 | 0.0 | nan | 0.9124 | nan | nan | 0.6643 | 0.0 | 0.9426 | 0.0 | nan | 0.3868 | 0.0 | 0.0 | 0.8361 | nan |
0.7441 | 20.0 | 280 | 0.5084 | 0.3533 | 0.5993 | 0.9277 | nan | 0.9691 | 0.0 | 0.9391 | nan | nan | 0.8075 | 0.0 | nan | 0.8801 | nan | nan | 0.5527 | 0.0 | 0.9333 | 0.0 | nan | 0.5197 | 0.0 | 0.0 | 0.8208 | nan |
0.4374 | 21.43 | 300 | 0.4683 | 0.3038 | 0.5549 | 0.9173 | nan | 0.9662 | 0.0 | 0.9480 | nan | nan | 0.7594 | 0.0 | nan | 0.6558 | nan | nan | 0.6024 | 0.0 | 0.9419 | 0.0 | nan | 0.2804 | 0.0 | 0.0 | 0.6056 | nan |
0.6224 | 22.86 | 320 | 0.4100 | 0.3810 | 0.5960 | 0.9374 | nan | 0.9704 | 0.0 | 0.9460 | nan | nan | 0.7131 | 0.0 | nan | 0.9467 | nan | nan | 0.5986 | 0.0 | 0.9401 | 0.0 | nan | 0.6197 | 0.0 | 0.0 | 0.8898 | nan |
0.4473 | 24.29 | 340 | 0.3933 | 0.3368 | 0.5431 | 0.9336 | nan | 0.9212 | 0.0 | 0.9620 | nan | nan | 0.6197 | 0.0 | nan | 0.7556 | nan | nan | 0.7221 | 0.0 | 0.9521 | 0.0 | nan | 0.2958 | 0.0 | 0.0 | 0.7245 | nan |
0.3364 | 25.71 | 360 | 0.4336 | 0.2976 | 0.5125 | 0.9134 | nan | 0.9408 | 0.0 | 0.9544 | nan | nan | 0.6075 | 0.0 | nan | 0.5721 | nan | nan | 0.6918 | 0.0 | 0.9481 | 0.0 | nan | 0.1998 | 0.0 | 0.0 | 0.5411 | nan |
0.281 | 27.14 | 380 | 0.3795 | 0.3689 | 0.5760 | 0.9420 | nan | 0.9250 | 0.0 | 0.9589 | nan | nan | 0.6859 | 0.0 | nan | 0.8863 | nan | nan | 0.7108 | 0.0 | 0.9518 | 0.0 | nan | 0.4576 | 0.0 | 0.0 | 0.8305 | nan |
0.3198 | 28.57 | 400 | 0.4023 | 0.3158 | 0.5143 | 0.9238 | nan | 0.9120 | 0.0 | 0.9610 | nan | nan | 0.5580 | 0.0 | nan | 0.6550 | nan | nan | 0.7210 | 0.0 | 0.9519 | 0.0 | nan | 0.2238 | 0.0 | 0.0 | 0.6293 | nan |
0.4624 | 30.0 | 420 | 0.3565 | 0.3770 | 0.5774 | 0.9475 | nan | 0.9408 | 0.0 | 0.9613 | nan | nan | 0.6287 | 0.0 | nan | 0.9337 | nan | nan | 0.6855 | 0.0 | 0.9539 | 0.0 | nan | 0.4943 | 0.0 | 0.0 | 0.8827 | nan |
0.2356 | 31.43 | 440 | 0.3940 | 0.3100 | 0.5349 | 0.9221 | nan | 0.9268 | 0.0 | 0.9602 | nan | nan | 0.7187 | 0.0 | nan | 0.6040 | nan | nan | 0.7005 | 0.0 | 0.9536 | 0.0 | nan | 0.2474 | 0.0 | 0.0 | 0.5781 | nan |
0.3931 | 32.86 | 460 | 0.3516 | 0.3162 | 0.5570 | 0.9258 | nan | 0.9338 | 0.0 | 0.9598 | nan | nan | 0.8124 | 0.0 | nan | 0.6362 | nan | nan | 0.6824 | 0.0 | 0.9542 | 0.0 | nan | 0.2888 | 0.0 | 0.0 | 0.6040 | nan |
0.2431 | 34.29 | 480 | 0.4011 | 0.2955 | 0.5291 | 0.9138 | nan | 0.9242 | 0.0 | 0.9583 | nan | nan | 0.7864 | 0.0 | nan | 0.5058 | nan | nan | 0.6954 | 0.0 | 0.9520 | 0.0 | nan | 0.2331 | 0.0 | 0.0 | 0.4832 | nan |
0.2131 | 35.71 | 500 | 0.2847 | 0.3764 | 0.5613 | 0.9487 | nan | 0.8877 | 0.0 | 0.9679 | nan | nan | 0.6103 | 0.0 | nan | 0.9020 | nan | nan | 0.7330 | 0.0 | 0.9571 | 0.0 | nan | 0.4539 | 0.0 | 0.0 | 0.8669 | nan |
0.4151 | 37.14 | 520 | 0.3176 | 0.3186 | 0.5239 | 0.9256 | nan | 0.8930 | 0.0 | 0.9640 | nan | nan | 0.6505 | 0.0 | nan | 0.6356 | nan | nan | 0.7251 | 0.0 | 0.9544 | 0.0 | nan | 0.2507 | 0.0 | 0.0 | 0.6187 | nan |
0.2408 | 38.57 | 540 | 0.3267 | 0.3071 | 0.5361 | 0.9208 | nan | 0.9264 | 0.0 | 0.9600 | nan | nan | 0.7441 | 0.0 | nan | 0.5859 | nan | nan | 0.6868 | 0.0 | 0.9538 | 0.0 | nan | 0.2526 | 0.0 | 0.0 | 0.5635 | nan |
0.2274 | 40.0 | 560 | 0.2875 | 0.3396 | 0.5471 | 0.9349 | nan | 0.9098 | 0.0 | 0.9626 | nan | nan | 0.6456 | 0.0 | nan | 0.7649 | nan | nan | 0.7018 | 0.0 | 0.9547 | 0.0 | nan | 0.3216 | 0.0 | 0.0 | 0.7387 | nan |
0.2452 | 41.43 | 580 | 0.2998 | 0.3181 | 0.5357 | 0.9279 | nan | 0.9089 | 0.0 | 0.9642 | nan | nan | 0.6932 | 0.0 | nan | 0.6480 | nan | nan | 0.7057 | 0.0 | 0.9562 | 0.0 | nan | 0.2578 | 0.0 | 0.0 | 0.6252 | nan |
0.2922 | 42.86 | 600 | 0.2957 | 0.3131 | 0.5246 | 0.9255 | nan | 0.9056 | 0.0 | 0.9643 | nan | nan | 0.6535 | 0.0 | nan | 0.6242 | nan | nan | 0.7103 | 0.0 | 0.9563 | 0.0 | nan | 0.2347 | 0.0 | 0.0 | 0.6037 | nan |
0.3704 | 44.29 | 620 | 0.3290 | 0.3172 | 0.5429 | 0.9247 | nan | 0.9246 | 0.0 | 0.9583 | nan | nan | 0.7123 | 0.0 | nan | 0.6621 | nan | nan | 0.6856 | 0.0 | 0.9527 | 0.0 | nan | 0.2707 | 0.0 | 0.0 | 0.6286 | nan |
0.2482 | 45.71 | 640 | 0.2995 | 0.3251 | 0.5368 | 0.9276 | nan | 0.9018 | 0.0 | 0.9617 | nan | nan | 0.6795 | 0.0 | nan | 0.6779 | nan | nan | 0.7154 | 0.0 | 0.9538 | 0.0 | nan | 0.2790 | 0.0 | 0.0 | 0.6528 | nan |
0.2798 | 47.14 | 660 | 0.2808 | 0.3323 | 0.5374 | 0.9319 | nan | 0.8938 | 0.0 | 0.9644 | nan | nan | 0.6554 | 0.0 | nan | 0.7110 | nan | nan | 0.7218 | 0.0 | 0.9554 | 0.0 | nan | 0.2919 | 0.0 | 0.0 | 0.6894 | nan |
0.2746 | 48.57 | 680 | 0.2695 | 0.3265 | 0.5341 | 0.9299 | nan | 0.8947 | 0.0 | 0.9642 | nan | nan | 0.6597 | 0.0 | nan | 0.6861 | nan | nan | 0.7198 | 0.0 | 0.9554 | 0.0 | nan | 0.2735 | 0.0 | 0.0 | 0.6633 | nan |
0.2169 | 50.0 | 700 | 0.2796 | 0.3218 | 0.5305 | 0.9276 | nan | 0.8954 | 0.0 | 0.9644 | nan | nan | 0.6710 | 0.0 | nan | 0.6525 | nan | nan | 0.7222 | 0.0 | 0.9553 | 0.0 | nan | 0.2630 | 0.0 | 0.0 | 0.6342 | nan |
框架版本
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.0.dev0
📄 许可证
该模型使用其他许可证。
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg是一种基于文本与图像提示的图像分割模型,支持零样本和单样本图像分割任务。
图像分割
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
其他
BRIA RMBG v1.4 是一款先进的背景移除模型,专为高效分离各类图像的前景与背景而设计,适用于非商业用途。
图像分割
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
其他
BRIA AI开发的最新背景移除模型,能有效分离各类图像的前景与背景,适合大规模商业内容创作场景。
图像分割
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
基于ATR数据集微调的SegFormer模型,用于服装和人体分割
图像分割
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM是一个能够通过输入提示(如点或框)生成高质量对象掩码的视觉模型,支持零样本分割任务
图像分割
Transformers 其他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet是一个用于高分辨率二分图像分割的深度学习模型,通过双边参考网络实现精确的图像分割。
图像分割
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
其他
SegFormer是一种基于Transformer的语义分割模型,在ADE20K数据集上进行了微调,适用于图像分割任务。
图像分割
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM是一个能够通过输入提示点或边界框生成高质量物体掩膜的视觉模型,具备零样本迁移能力。
图像分割
Transformers 其他

S
facebook
455.43k
28
Face Parsing
基于nvidia/mit-b5微调的语义分割模型,用于面部解析任务
图像分割
Transformers 英语

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM是一个能够根据输入提示生成高质量对象掩码的视觉模型,支持零样本迁移到新任务
图像分割
Transformers 其他

S
facebook
324.78k
163
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文