标签:
- 视觉
- 图像分割
数据集:
- segments/sidewalk-semantic
微调自:
- nvidia/mit-b5
小部件:
- 图片: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg
示例标题: 布鲁日
基于sidewalk-semantic数据集微调的SegFormer(b5尺寸)模型
该SegFormer模型在SegmentsAI的sidewalk-semantic
数据集上进行了微调。该模型由Xie等人在论文《SegFormer:基于Transformer的语义分割简单高效设计》中提出,并首次发布于此代码库。
模型描述
SegFormer由一个分层的Transformer编码器和一个轻量级的全MLP解码头组成,在ADE20K和Cityscapes等语义分割基准测试中取得了优异的结果。分层Transformer首先在ImageNet-1k上进行预训练,随后添加解码头并在下游数据集上共同进行微调。
代码与笔记本
以下是如何使用该模型对sidewalk数据集中的图像进行分类的示例:
from transformers import SegformerFeatureExtractor, SegformerForImageClassification
from PIL import Image
import requests
url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
model = SegformerForImageClassification.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("预测类别:", model.config.id2label[predicted_class_idx])
您可以查看详细的笔记本此处。
更多代码示例,请参阅文档。
许可证
该模型的许可证可在此处找到。
BibTeX条目与引用信息
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}