🚀 segformer-b1-solarModuleAnomaly-v0.1
该模型是 nvidia/mit-b1 在 zklee98/solarModuleAnomaly 数据集上的微调版本。它在评估集上取得了以下结果:
- 损失:0.1547
- 平均交并比(Mean Iou):0.3822
- 平均准确率:0.7643
- 总体准确率:0.7643
- 未标记准确率:nan
- 异常准确率:0.7643
- 未标记交并比:0.0
- 异常交并比:0.7643
📚 详细文档
训练过程
训练超参数
训练期间使用了以下超参数:
- 学习率:6e-05
- 训练批次大小:2
- 评估批次大小:2
- 随机种子:42
- 优化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08)
- 学习率调度器类型:线性
- 训练轮数:15
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
平均交并比 |
平均准确率 |
总体准确率 |
未标记准确率 |
异常准确率 |
未标记交并比 |
异常交并比 |
0.4699 |
0.4 |
20 |
0.6337 |
0.4581 |
0.9162 |
0.9162 |
nan |
0.9162 |
0.0 |
0.9162 |
0.3129 |
0.8 |
40 |
0.4636 |
0.3704 |
0.7407 |
0.7407 |
nan |
0.7407 |
0.0 |
0.7407 |
0.2732 |
1.2 |
60 |
0.3164 |
0.3867 |
0.7734 |
0.7734 |
nan |
0.7734 |
0.0 |
0.7734 |
0.2653 |
1.6 |
80 |
0.3769 |
0.4090 |
0.8180 |
0.8180 |
nan |
0.8180 |
0.0 |
0.8180 |
0.2232 |
2.0 |
100 |
0.2976 |
0.2479 |
0.4958 |
0.4958 |
nan |
0.4958 |
0.0 |
0.4958 |
0.5305 |
2.4 |
120 |
0.3151 |
0.3807 |
0.7613 |
0.7613 |
nan |
0.7613 |
0.0 |
0.7613 |
0.2423 |
2.8 |
140 |
0.3189 |
0.4152 |
0.8305 |
0.8305 |
nan |
0.8305 |
0.0 |
0.8305 |
0.3341 |
3.2 |
160 |
0.2384 |
0.3861 |
0.7723 |
0.7723 |
nan |
0.7723 |
0.0 |
0.7723 |
0.2146 |
3.6 |
180 |
0.3200 |
0.4621 |
0.9243 |
0.9243 |
nan |
0.9243 |
0.0 |
0.9243 |
0.1866 |
4.0 |
200 |
0.2510 |
0.3646 |
0.7291 |
0.7291 |
nan |
0.7291 |
0.0 |
0.7291 |
0.2861 |
4.4 |
220 |
0.2736 |
0.4202 |
0.8404 |
0.8404 |
nan |
0.8404 |
0.0 |
0.8404 |
0.2048 |
4.8 |
240 |
0.2410 |
0.3912 |
0.7823 |
0.7823 |
nan |
0.7823 |
0.0 |
0.7823 |
0.1604 |
5.2 |
260 |
0.2233 |
0.3672 |
0.7344 |
0.7344 |
nan |
0.7344 |
0.0 |
0.7344 |
0.2756 |
5.6 |
280 |
0.2705 |
0.4494 |
0.8987 |
0.8987 |
nan |
0.8987 |
0.0 |
0.8987 |
0.1859 |
6.0 |
300 |
0.2211 |
0.4045 |
0.8089 |
0.8089 |
nan |
0.8089 |
0.0 |
0.8089 |
0.1306 |
6.4 |
320 |
0.2140 |
0.3763 |
0.7525 |
0.7525 |
nan |
0.7525 |
0.0 |
0.7525 |
0.5508 |
6.8 |
340 |
0.2231 |
0.4185 |
0.8371 |
0.8371 |
nan |
0.8371 |
0.0 |
0.8371 |
0.1446 |
7.2 |
360 |
0.2139 |
0.3666 |
0.7332 |
0.7332 |
nan |
0.7332 |
0.0 |
0.7332 |
0.3275 |
7.6 |
380 |
0.2470 |
0.3964 |
0.7928 |
0.7928 |
nan |
0.7928 |
0.0 |
0.7928 |
0.164 |
8.0 |
400 |
0.2017 |
0.3910 |
0.7819 |
0.7819 |
nan |
0.7819 |
0.0 |
0.7819 |
0.1864 |
8.4 |
420 |
0.2307 |
0.4408 |
0.8816 |
0.8816 |
nan |
0.8816 |
0.0 |
0.8816 |
0.1578 |
8.8 |
440 |
0.1869 |
0.3707 |
0.7414 |
0.7414 |
nan |
0.7414 |
0.0 |
0.7414 |
0.1201 |
9.2 |
460 |
0.2115 |
0.3834 |
0.7667 |
0.7667 |
nan |
0.7667 |
0.0 |
0.7667 |
0.1783 |
9.6 |
480 |
0.2009 |
0.3747 |
0.7495 |
0.7495 |
nan |
0.7495 |
0.0 |
0.7495 |
0.1232 |
10.0 |
500 |
0.1797 |
0.3865 |
0.7729 |
0.7729 |
nan |
0.7729 |
0.0 |
0.7729 |
0.2572 |
10.4 |
520 |
0.1983 |
0.4057 |
0.8115 |
0.8115 |
nan |
0.8115 |
0.0 |
0.8115 |
0.1209 |
10.8 |
540 |
0.1607 |
0.4274 |
0.8547 |
0.8547 |
nan |
0.8547 |
0.0 |
0.8547 |
0.1234 |
11.2 |
560 |
0.2260 |
0.4066 |
0.8133 |
0.8133 |
nan |
0.8133 |
0.0 |
0.8133 |
0.145 |
11.6 |
580 |
0.1963 |
0.3939 |
0.7878 |
0.7878 |
nan |
0.7878 |
0.0 |
0.7878 |
0.0665 |
12.0 |
600 |
0.1912 |
0.3873 |
0.7747 |
0.7747 |
nan |
0.7747 |
0.0 |
0.7747 |
0.0826 |
12.4 |
620 |
0.2095 |
0.4186 |
0.8373 |
0.8373 |
nan |
0.8373 |
0.0 |
0.8373 |
0.1212 |
12.8 |
640 |
0.1732 |
0.4059 |
0.8118 |
0.8118 |
nan |
0.8118 |
0.0 |
0.8118 |
0.142 |
13.2 |
660 |
0.2086 |
0.4007 |
0.8013 |
0.8013 |
nan |
0.8013 |
0.0 |
0.8013 |
0.0899 |
13.6 |
680 |
0.1838 |
0.3928 |
0.7856 |
0.7856 |
nan |
0.7856 |
0.0 |
0.7856 |
0.1857 |
14.0 |
700 |
0.1638 |
0.4157 |
0.8315 |
0.8315 |
nan |
0.8315 |
0.0 |
0.8315 |
0.0788 |
14.4 |
720 |
0.1736 |
0.4112 |
0.8223 |
0.8223 |
nan |
0.8223 |
0.0 |
0.8223 |
0.2543 |
14.8 |
740 |
0.1547 |
0.3822 |
0.7643 |
0.7643 |
nan |
0.7643 |
0.0 |
0.7643 |
框架版本
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
📄 许可证
该模型使用其他许可证。