标签:
- 视觉
- 图像分割
数据集:
- segments/sidewalk-semantic
小部件:
- 图片: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg
示例标题: 布鲁日
基于Segments.ai sidewalk-semantic微调的SegFormer (b0尺寸)模型
该SegFormer模型在Segments.ai的sidewalk-semantic
数据集上进行了微调。该模型由Xie等人在论文SegFormer: 基于Transformer的语义分割简单高效设计中提出,并首次发布于此代码库。
模型描述
SegFormer由分层Transformer编码器和轻量级全MLP解码头组成,在ADE20K和Cityscapes等语义分割基准测试中取得了优异成果。分层Transformer首先在ImageNet-1k上进行预训练,随后添加解码头并在下游数据集上共同微调。
使用方法
以下是使用该模型对人行道数据集图像进行分类的方法:
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("segments-tobias/segformer-b0-finetuned-segments-sidewalk")
url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
更多代码示例请参阅文档。
BibTeX引用信息
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}