license: cc-by-nc-sa-4.0
tags:
- 训练生成
model-index:
- name: lmv2-g-aadhaar-236doc-06-14
results: []
lmv2-g-aadhaar-236doc-06-14
该模型是基于microsoft/layoutlmv2-base-uncased在None数据集上微调的版本。在评估集上取得如下结果:
- 损失值: 0.0427
- Aadhaar精确率: 0.9783
- Aadhaar召回率: 1.0
- Aadhaar F1值: 0.9890
- Aadhaar数量: 45
- 出生日期精确率: 0.9787
- 出生日期召回率: 1.0
- 出生日期F1值: 0.9892
- 出生日期数量: 46
- 性别精确率: 1.0
- 性别召回率: 0.9787
- 性别F1值: 0.9892
- 性别数量: 47
- 姓名精确率: 0.9574
- 姓名召回率: 0.9375
- 姓名F1值: 0.9474
- 姓名数量: 48
- 综合精确率: 0.9785
- 综合召回率: 0.9785
- 综合F1值: 0.9785
- 综合准确率: 0.9939
模型描述
需补充更多信息
使用范围与限制
需补充更多信息
训练与评估数据
需补充更多信息
训练流程
训练超参数
训练过程中使用以下超参数:
- 学习率: 4e-05
- 训练批大小: 1
- 评估批大小: 1
- 随机种子: 42
- 优化器: 带betas=(0.9,0.999)和epsilon=1e-08的Adam
- 学习率调度器类型: 恒定
- 训练轮次: 30
训练结果
训练损失 |
轮次 |
步数 |
验证损失 |
Aadhaar精确率 |
Aadhaar召回率 |
Aadhaar F1 |
Aadhaar数量 |
出生日期精确率 |
出生日期召回率 |
出生日期F1 |
出生日期数量 |
性别精确率 |
性别召回率 |
性别F1 |
性别数量 |
姓名精确率 |
姓名召回率 |
姓名F1 |
姓名数量 |
综合精确率 |
综合召回率 |
综合F1 |
综合准确率 |
1.0024 |
1.0 |
188 |
0.5819 |
0.9348 |
0.9556 |
0.9451 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9574 |
0.9783 |
47 |
0.5172 |
0.625 |
0.5660 |
48 |
0.8410 |
0.8817 |
0.8609 |
0.9744 |
0.4484 |
2.0 |
376 |
0.3263 |
0.8980 |
0.9778 |
0.9362 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.6842 |
0.8125 |
0.7429 |
48 |
0.8838 |
0.9409 |
0.9115 |
0.9733 |
0.2508 |
3.0 |
564 |
0.2230 |
0.9318 |
0.9111 |
0.9213 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8913 |
0.8542 |
0.8723 |
48 |
0.9560 |
0.9355 |
0.9457 |
0.9811 |
0.165 |
4.0 |
752 |
0.1728 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8444 |
0.7917 |
0.8172 |
48 |
0.9457 |
0.9355 |
0.9405 |
0.9844 |
0.1081 |
5.0 |
940 |
0.0987 |
0.8958 |
0.9556 |
0.9247 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
1.0 |
0.9167 |
0.9565 |
48 |
0.9728 |
0.9624 |
0.9676 |
0.9928 |
0.0834 |
6.0 |
1128 |
0.0984 |
0.8980 |
0.9778 |
0.9362 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9574 |
0.9783 |
47 |
0.8148 |
0.9167 |
0.8627 |
48 |
0.9227 |
0.9624 |
0.9421 |
0.9833 |
0.0676 |
7.0 |
1316 |
0.0773 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9111 |
0.8542 |
0.8817 |
48 |
0.9620 |
0.9516 |
0.9568 |
0.9894 |
0.0572 |
8.0 |
1504 |
0.0786 |
0.8235 |
0.9333 |
0.8750 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8936 |
0.875 |
0.8842 |
48 |
0.9263 |
0.9462 |
0.9362 |
0.9872 |
0.0481 |
9.0 |
1692 |
0.0576 |
0.9375 |
1.0 |
0.9677 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9362 |
0.9167 |
0.9263 |
48 |
0.9679 |
0.9731 |
0.9705 |
0.99 |
0.0349 |
10.0 |
1880 |
0.0610 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8958 |
0.8958 |
0.8958 |
48 |
0.9626 |
0.9677 |
0.9651 |
0.9894 |
0.0287 |
11.0 |
2068 |
0.0978 |
0.9091 |
0.8889 |
0.8989 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9348 |
0.8958 |
0.9149 |
48 |
0.9615 |
0.9409 |
0.9511 |
0.985 |
0.0297 |
12.0 |
2256 |
0.0993 |
0.9375 |
1.0 |
0.9677 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.7959 |
0.8125 |
0.8041 |
48 |
0.9312 |
0.9462 |
0.9387 |
0.9833 |
0.0395 |
13.0 |
2444 |
0.0824 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.875 |
0.875 |
0.875 |
48 |
0.9519 |
0.9570 |
0.9544 |
0.9872 |
0.0333 |
14.0 |
2632 |
0.0788 |
0.8913 |
0.9111 |
0.9011 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9556 |
0.8958 |
0.9247 |
48 |
0.9617 |
0.9462 |
0.9539 |
0.9867 |
0.0356 |
15.0 |
2820 |
0.0808 |
0.84 |
0.9333 |
0.8842 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9565 |
0.9167 |
0.9362 |
48 |
0.9468 |
0.9570 |
0.9519 |
0.9867 |
0.0192 |
16.0 |
3008 |
0.0955 |
0.8462 |
0.9778 |
0.9072 |
45 |
0.9787 |
1.0 |
0.9892 |
46 |
0.9583 |
0.9787 |
0.9684 |
47 |
0.9070 |
0.8125 |
0.8571 |
48 |
0.9211 |
0.9409 |
0.9309 |
0.9822 |
0.016 |
17.0 |
3196 |
0.0936 |
0.9130 |
0.9333 |
0.9231 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9318 |
0.8542 |
0.8913 |
48 |
0.9615 |
0.9409 |
0.9511 |
0.9867 |
0.0218 |
18.0 |
3384 |
0.1009 |
0.9545 |
0.9333 |
0.9438 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8571 |
0.875 |
0.8660 |
48 |
0.9514 |
0.9462 |
0.9488 |
0.9844 |
0.0165 |
19.0 |
3572 |
0.0517 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9333 |
0.875 |
0.9032 |
48 |
0.9728 |
0.9624 |
0.9676 |
0.9906 |
0.0198 |
20.0 |
3760 |
0.0890 |
0.9167 |
0.9778 |
0.9462 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9149 |
0.8958 |
0.9053 |
48 |
0.9572 |
0.9624 |
0.9598 |
0.9867 |
0.0077 |
21.0 |
3948 |
0.0835 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.88 |
0.9167 |
0.8980 |
48 |
0.9577 |
0.9731 |
0.9653 |
0.9872 |
0.0088 |
22.0 |
4136 |
0.0427 |
0.9783 |
1.0 |
0.9890 |
45 |
0.9787 |
1.0 |
0.9892 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9574 |
0.9375 |
0.9474 |
48 |
0.9785 |
0.9785 |
0.9785 |
0.9939 |
0.0078 |
23.0 |
4324 |
0.0597 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8654 |
0.9375 |
0.9 |
48 |
0.9529 |
0.9785 |
0.9655 |
0.9889 |
0.0178 |
24.0 |
4512 |
0.0524 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
1.0 |
0.875 |
0.9333 |
48 |
0.9890 |
0.9624 |
0.9755 |
0.9922 |
0.012 |
25.0 |
4700 |
0.0637 |
0.9375 |
1.0 |
0.9677 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8491 |
0.9375 |
0.8911 |
48 |
0.9430 |
0.9785 |
0.9604 |
0.9867 |
0.0135 |
26.0 |
4888 |
0.0668 |
0.9184 |
1.0 |
0.9574 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.86 |
0.8958 |
0.8776 |
48 |
0.9424 |
0.9677 |
0.9549 |
0.9867 |
0.0123 |
27.0 |
5076 |
0.0713 |
0.9565 |
0.9778 |
0.9670 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9375 |
0.9375 |
0.9375 |
48 |
0.9731 |
0.9731 |
0.9731 |
0.9911 |
0.0074 |
28.0 |
5264 |
0.0675 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9 |
0.9375 |
0.9184 |
48 |
0.9577 |
0.9731 |
0.9653 |
0.99 |
0.0051 |
29.0 |
5452 |
0.0713 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9167 |
0.9167 |
0.9167 |
48 |
0.9626 |
0.9677 |
0.9651 |
0.9906 |
0.0027 |
30.0 |
5640 |
0.0725 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9167 |
0.9167 |
0.9167 |
48 |
0.9626 |
0.9677 |
0.9651 |
0.9906 |
框架版本
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1