语言: "zh"
缩略图:
标签:
- 音频转音频
- 语音增强
- WHAM!
- SepFormer
- Transformer
- PyTorch
- SpeechBrain
许可证: "apache-2.0"
数据集:
- WHAM
评估指标:
- SI-SNR
- PESQ
基于WHAM!训练的SepFormer语音增强模型(16kHz采样频率)
本仓库提供使用SepFormer模型进行语音增强(去噪)所需的所有工具,该模型通过SpeechBrain实现,并在WHAM!数据集上以16kHz采样频率进行了预训练。WHAM!数据集本质上是WSJ0-Mix数据集的一个版本,包含8kHz环境噪声和混响。为了获得更好的体验,我们建议您了解更多关于SpeechBrain的信息。该模型在WHAM!测试集上的性能为14.3 dB SI-SNR。
发布版本 |
测试集SI-SNR |
测试集PESQ |
2022-06-30 |
13.8 |
2.20 |
安装SpeechBrain
首先,请使用以下命令安装SpeechBrain:
pip install speechbrain
请注意,我们建议您阅读我们的教程,了解更多关于SpeechBrain的信息。
对您自己的音频文件进行语音增强
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio
model = separator.from_hparams(source="speechbrain/sepformer-wham16k-enhancement", savedir='pretrained_models/sepformer-wham16k-enhancement')
est_sources = model.separate_file(path='speechbrain/sepformer-wham16k-enhancement/example_wham16k.wav')
torchaudio.save("enhanced_wham16k.wav", est_sources[:, :, 0].detach().cpu(), 16000)
在GPU上进行推理
要在GPU上执行推理,调用from_hparams
方法时添加run_opts={"device":"cuda"}
参数。
训练
训练脚本目前正在开发中,相关拉取请求正在进行中。
一旦拉取请求合并,我们将更新模型卡片。
您可以在此处找到我们的训练结果(模型、日志等)这里。
限制
SpeechBrain团队不对该模型在其他数据集上的性能提供任何保证。
引用SpeechBrain
@misc{speechbrain,
title={{SpeechBrain}: 一个通用语音工具包},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
引用SepFormer
@inproceedings{subakan2021attention,
title={注意力机制在语音分离中的全面应用},
author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
year={2021},
booktitle={ICASSP 2021}
}
@article{subakan2023exploring,
author={Subakan, Cem and Ravanelli, Mirco and Cornell, Samuele and Grondin, François and Bronzi, Mirko},
journal={IEEE/ACM音频、语音与语言处理汇刊},
title={探索自注意力机制在语音分离中的应用},
year={2023},
volume={31},
pages={2169-2180},
}
关于SpeechBrain
- 官网: https://speechbrain.github.io/
- 代码: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/