语言: 丰语
数据集:
- 丰语数据集
评估指标:
- 词错误率(WER)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
- HF-ASR排行榜
许可证: Apache-2.0
模型索引:
- 名称: Fon XLSR Wav2Vec2 Large 53
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: 丰语
类型: 丰语数据集
参数: fon
评估指标:
- 名称: 测试WER
类型: wer
值: 14.97
Wav2Vec2-Large-XLSR-53-Fon
基于facebook/wav2vec2-large-xlsr-53模型,使用丰语(或称Fongbe)的丰语数据集进行微调。
使用该模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),如下所示:
import json
import random
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
for root, dirs, files in os.walk(test/):
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]'
def remove_special_characters(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"]=speech_array.squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测:", processor.batch_decode(predicted_ids))
print("参考:", test_dataset["sentence"][:2])
评估
可在我们独特的丰语测试数据上评估模型,如下所示:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
for root, dirs, files in os.walk(test/):
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]'
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model.to("cuda")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 14.97%
训练
丰语数据集被划分为训练集
(8235个样本)、验证集
(1107个样本)和测试集
(1061个样本)。
训练脚本可在此处找到。
项目合作者
- Chris C. Emezue (Twitter)|(chris.emezue@gmail.com)
- Bonaventure F.P. Dossou (HuggingFace用户名: bonadossou)|(Twitter)|(femipancrace.dossou@gmail.com)