🚀 Wav2Vec2-Large-XLSR-53-哈萨克语
本项目基于 facebook/wav2vec2-large-xlsr-53 模型,使用 哈萨克语语音语料库 v1.1 针对哈萨克语自动语音识别(ASR)任务进行了微调。
使用该模型时,请确保输入的语音采样率为 16kHz。
🚀 快速开始
模型使用
此模型可直接使用(无需语言模型),示例代码如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from utils import get_test_dataset
test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1")
processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-kazakh")
model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-kazakh")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
模型评估
可在 哈萨克语语音语料库 v1.1 的测试集上对该模型进行评估。评估时,需下载 压缩包 并解压,然后将数据路径传递给 get_test_dataset
函数,示例代码如下:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
from utils import get_test_dataset
test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh")
model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh")
model.to("cuda")
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["text"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:19.65%
模型训练
模型训练使用了哈萨克语语音语料库 v1.1 的 train
数据集。
📄 许可证
本项目采用 Apache-2.0 许可证。
📋 模型信息
属性 |
详情 |
模型类型 |
基于微调的 Wav2Vec2-Large-XLSR-53 的哈萨克语自动语音识别模型 |
训练数据 |
哈萨克语语音语料库 v1.1 的训练集 |
评估指标 |
词错误率(WER) |
基础模型 |
facebook/wav2vec2-large-xlsr-53 |