language:
- 葡萄牙语
license: apache-2.0
tags:
- 自动语音识别
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- 葡萄牙语
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: Jonatas Grosman的XLS-R Wav2Vec2葡萄牙语模型
results:
- task:
name: 自动语音识别
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: pt
metrics:
- name: 测试集WER
type: wer
value: 8.7
- name: 测试集CER
type: cer
value: 2.55
- name: 测试集WER (+语言模型)
type: wer
value: 6.04
- name: 测试集CER (+语言模型)
type: cer
value: 1.98
- task:
name: 自动语音识别
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - 开发集
type: speech-recognition-community-v2/dev_data
args: pt
metrics:
- name: 开发集WER
type: wer
value: 24.23
- name: 开发集CER
type: cer
value: 11.3
- name: 开发集WER (+语言模型)
type: wer
value: 19.41
- name: 开发集CER (+语言模型)
type: cer
value: 10.19
- task:
name: 自动语音识别
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - 测试集
type: speech-recognition-community-v2/eval_data
args: pt
metrics:
- name: 测试集WER
type: wer
value: 18.8
针对葡萄牙语语音识别微调的XLS-R 1B模型
基于facebook/wav2vec2-xls-r-1b模型,使用Common Voice 8.0、CORAA、Multilingual TEDx和Multilingual LibriSpeech数据集的训练集和验证集对葡萄牙语进行了微调。使用本模型时,请确保语音输入采样率为16kHz。
本模型由HuggingSound工具微调完成,并感谢OVHcloud慷慨提供的GPU算力资源:)
使用方法
使用HuggingSound库:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
自行编写推理脚本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
评估命令
- 在
mozilla-foundation/common_voice_8_0
数据集的test
分割上评估
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset mozilla-foundation/common_voice_8_0 --config pt --split test
- 在
speech-recognition-community-v2/dev_data
数据集上评估
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
引用
如需引用本模型,请使用以下格式:
@misc{grosman2021xlsr-1b-portuguese,
title={针对葡萄牙语语音识别微调的{XLS-R} 1{B}模型},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese}},
year={2022}
}