语言: 尼泊尔语
数据集:
- OpenSLR
- Common Voice
评估指标:
- 词错误率 (WER)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证: Apache-2.0
模型索引:
- 名称: wav2vec2-xlsr-nepali
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: OpenSLR ne
类型: OpenSLR
参数: ne
评估指标:
- 名称: 测试WER
类型: wer
值: 05.97
Wav2Vec2-Large-XLSR-53-尼泊尔语
基于facebook/wav2vec2-large-xlsr-53模型,使用Common Voice和OpenSLR ne数据集对尼泊尔语进行微调。
使用此模型时,请确保语音输入采样率为16kHz。
使用方法
该模型可直接使用(无需语言模型),如下所示:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
!wget https://www.openslr.org/resources/43/ne_np_female.zip
!unzip ne_np_female.zip
!ls ne_np_female
colnames=['path','sentence']
df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
train, test = train_test_split(df, test_size=0.1)
test.to_csv('/content/ne_np_female/line_index_test.csv')
test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
结果
预测结果: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']
参考文本: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']
评估
该模型可在Common Voice的尼泊尔语测试数据上进行如下评估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
!wget https://www.openslr.org/resources/43/ne_np_female.zip
!unzip ne_np_female.zip
!ls ne_np_female
colnames=['path','sentence']
df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
train, test = train_test_split(df, test_size=0.1)
test.to_csv('/content/ne_np_female/line_index_test.csv')
test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
\twith torch.no_grad():
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
\tpred_ids = torch.argmax(logits, dim=-1)
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\treturn batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 05.97%
训练
训练脚本可在此处找到。