许可证:apache-2.0
标签:
- 训练生成
模型索引:
名称:wav2vec2-xls-r-300m-romanian
该模型在Common Voice罗马尼亚语测试集上的WER为:12.457178%
wav2vec2-xls-r-300m-romanian
本模型是基于facebook/wav2vec2-xls-r-300m在Common Voice罗马尼亚语及RSS数据集上微调的版本,评估集表现如下:
- 评估损失:0.0836
- 评估WER:0.0705
- 评估耗时:160.4549秒
- 每秒评估样本数:11.081
- 每秒评估步数:1.39
- 训练轮次:14.38
- 训练步数:2703
模型描述
(待补充详细信息)
预期用途与限制
(待补充详细信息)
训练与评估数据
(待补充详细信息)
训练流程
训练超参数
- 学习率:0.0003
- 训练批次大小:8
- 评估批次大小:8
- 随机种子:42
- 梯度累积步数:8
- 总训练批次大小:64
- 优化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 学习率调度器类型:线性
- 学习率预热步数:50
- 训练轮次:15
- 混合精度训练:原生AMP
框架版本
- Transformers 4.11.3
- PyTorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
评估代码如下:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ro", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian")
model = Wav2Vec2ForCTC.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian")
model.to("cuda")
chars_to_ignore_regex = '['+string.punctuation+']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
评估代码来源:huggingface.co/anton-l