语言: kn
数据集:
- openslr
指标:
- wer
标签:
- 音频
- 自动语音识别
- 语音
- xlsr-微调周
许可证: apache-2.0
模型索引:
- 名称: Amogh Gopadi的XLSR Wav2Vec2 Large 53卡纳达语模型
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: OpenSLR kn
类型: openslr
指标:
- 名称: 测试WER
类型: wer
值: 27.08
Wav2Vec2-Large-XLSR-53-卡纳达语
在卡纳达语上使用OpenSLR SLR79数据集对facebook/wav2vec2-large-xlsr-53进行微调。使用此模型时,请确保您的语音输入采样率为16kHz。
使用方法
该模型可以直接使用(无需语言模型),假设您有一个包含卡纳达语sentence
和path
字段的数据集:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测:", processor.batch_decode(predicted_ids))
print("参考:", test_dataset["sentence"][:2])
评估
可以在OpenSLR上10%的卡纳达语数据上评估模型如下:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"),
attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 27.08%
训练
使用了OpenSLR卡纳达数据集的90%进行训练。
训练使用的Colab笔记本可在此处找到。