语言: 捷克语
数据集: Common Voice
评估指标: 词错误率(WER)
标签:
- 音频
- 自动语音识别
- 语音
- XLSR微调周
许可证: Apache-2.0
模型索引:
- 名称: Czech XLSR Wav2Vec2 Large 53
结果:
- 任务:
名称: 语音识别
类型: 自动语音识别
数据集:
名称: Common Voice cs
类型: common_voice
参数: cs
指标:
- 名称: 测试WER
类型: wer
值: 24.56
Wav2Vec2-Large-XLSR-53-捷克语版
本模型基于facebook/wav2vec2-large-xlsr-53在捷克语Common Voice数据集上微调而成。使用时请确保语音输入采样率为16kHz。
使用方法
无需语言模型即可直接使用:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "cs", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考文本:", test_dataset["sentence"][:2])
评估
可在Common Voice捷克语测试集上按以下方式评估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "cs", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
model.to("cuda")
chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“']
chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().strip()
batch["sentence"] = re.sub(re.compile('[äá]'), 'a', batch['sentence'])
batch["sentence"] = re.sub(re.compile('[öó]'), 'o', batch['sentence'])
batch["sentence"] = re.sub(re.compile('[èé]'), 'e', batch['sentence'])
batch["sentence"] = re.sub(re.compile("[ïí]"), 'i', batch['sentence'])
batch["sentence"] = re.sub(re.compile("[üů]"), 'u', batch['sentence'])
batch['sentence'] = re.sub(' ', ' ', batch['sentence'])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: 24.56% WER
训练
使用Common Voice的train
和validation
集进行训练。训练脚本将发布于此链接。