language:
- 孟加拉语
- 英语
pipeline_tag: 句子相似度
tags:
- 句子转换器
- 特征提取
- 句子相似度
孟加拉语句子转换器
句子转换器是一种前沿的自然语言处理(NLP)模型,能够将句子编码并转换为高维嵌入向量。借助这项技术,我们可以在文本分类、信息检索、语义搜索等多个领域解锁强大的洞察力和应用场景。
该模型基于stsb-xlm-r-multilingual
微调而成,现已登陆Hugging Face平台!🎉🎉
安装
使用方法(Sentence-Transformers)
安装sentence-transformers后即可轻松使用本模型:
pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
sentences = ['我喜欢吃苹果。', '我有一部苹果手机。','你住在这附近吗?', '附近有人吗?']
model = SentenceTransformer('shihab17/bangla-sentence-transformer')
embeddings = model.encode(sentences)
print(embeddings)
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['我喜欢吃苹果。', '我有一部苹果手机。','你住在这附近吗?', '附近有人吗?']
tokenizer = AutoTokenizer.from_pretrained('shihab17/bangla-sentence-transformer')
model = AutoModel.from_pretrained('shihab17/bangla-sentence-transformer')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入向量:")
print(sentence_embeddings)
如何计算句子相似度
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import pytorch_cos_sim
transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
sentences = ['我喜欢吃苹果。', '我有一部苹果手机。','你住在这附近吗?', '附近有人吗?']
sentences_embeddings = transformer.encode(sentences)
for i in range(len(sentences)):
for j in range(i, len(sentences)):
sen_1 = sentences[i]
sen_2 = sentences[j]
sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
print(sen_1, '----->', sen_2, sim_score)
最佳MSE得分:2.5556
引用
若使用本模型,请引用以下论文:
@INPROCEEDINGS{10754765,
author={Uddin, Md. Shihab and Haque, Mohd Ariful and Rifat, Rakib Hossain and Kamal, Marufa and Gupta, Kishor Datta and George, Roy},
booktitle={2024 IEEE 15th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)},
title={Bangla SBERT - 基于多语言知识蒸馏的句子嵌入},
year={2024},
volume={},
number={},
pages={495-500},
keywords={情感分析;机器学习算法;准确率;文本分类;语义学;转换器;移动通信;信息检索;机器翻译;句子相似度;句子转换器;SBERT;知识蒸馏;孟加拉语NLP},
doi={10.1109/UEMCON62879.2024.10754765}}