language:
- tr
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- nli_tr
- emrecan/stsb-mt-turkish
widget:
source_sentence: "这是个非常快乐的人"
sentences:
- "这是只快乐的狗"
- "这是个开心到飞起的人"
- "正在下大雪"
emrecan/bert-base-turkish-cased-mean-nli-stsb-tr
这是一个sentence-transformers模型:它能将句子和段落映射到768维稠密向量空间,可用于聚类或语义搜索等任务。该模型基于土耳其语机器翻译版本的NLI和STS-b数据集训练,使用了sentence-transformers GitHub仓库中的训练脚本示例。
使用方法(Sentence-Transformers)
安装sentence-transformers后即可轻松使用本模型:
pip install -U sentence-transformers
使用方式如下:
from sentence_transformers import SentenceTransformer
sentences = ["这是个示例句子", "每个句子都被转化为向量"]
model = SentenceTransformer('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
使用方法(HuggingFace Transformers)
若不使用sentence-transformers,可通过以下方式调用模型:首先将输入传入transformer模型,然后对上下文词嵌入执行正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["这是个示例句子", "每个句子都被转化为向量"]
tokenizer = AutoTokenizer.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("句子嵌入向量:")
print(sentence_embeddings)
评估结果
测试集与开发集的评估结果如下:
数据集划分 |
训练轮次 |
余弦皮尔逊 |
余弦斯皮尔曼 |
欧氏皮尔逊 |
欧氏斯皮尔曼 |
曼哈顿皮尔逊 |
曼哈顿斯皮尔曼 |
点积皮尔逊 |
点积斯皮尔曼 |
测试集 |
- |
0.834 |
0.830 |
0.820 |
0.819 |
0.819 |
0.818 |
0.799 |
0.789 |
验证集 |
1 |
0.850 |
0.848 |
0.831 |
0.835 |
0.83 |
0.83 |
0.80 |
0.806 |
验证集 |
2 |
0.857 |
0.857 |
0.844 |
0.848 |
0.844 |
0.848 |
0.813 |
0.810 |
验证集 |
3 |
0.860 |
0.859 |
0.846 |
0.851 |
0.846 |
0.850 |
0.825 |
0.822 |
验证集 |
4 |
0.859 |
0.860 |
0.846 |
0.851 |
0.846 |
0.851 |
0.825 |
0.823 |
训练过程
训练脚本采用training_nli_v2.py
和training_stsbenchmark_continue_training.py
。
训练参数如下:
数据加载器:
长度360的torch.utils.data.dataloader.DataLoader
,参数为:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()方法参数:
{
"epochs": 4,
"evaluation_steps": 200,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 144,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者